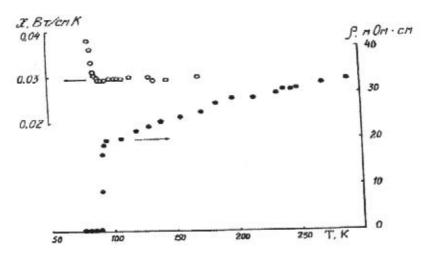
UOT 538,945


İFRATKEÇİRİCİ YBa₂Cu₃O₇₋₆ KERAMİKASININ İSTİLİK XASSƏLƏRİ

D.H. ARASLI, R.N. RƏHİMOV, İ.Ə.İSMAYILOV, İ.X.MƏMMƏDOV, V.M. ƏLİYEV

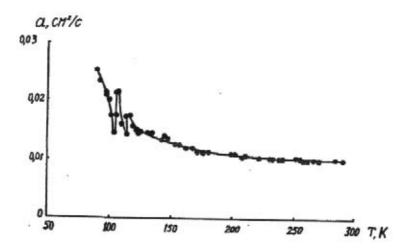
Azərbaycan EA-nın Fizika İnstitutu Bakı-143, pr. H. Cavid 33 (Daxil oldu 29.06.90)

Ifratkeçirici YBa₂Cu₃O_{7-b} keramikasının temperatur keçiriciliyi və istilikkeçiriciliyi 80-300 K temperatur bölümündə tədqiq olunmuşdur. 100-180 K temperatur bölümündə fononların səpilməsinin əsasən dənəvari həcmlər daxilində baş verdiyi göstərilmişdir. Temperatur keçiriciliyi temperatur asılılığında 103 K-də müşahidə olunan minimum maddədə baş verən struktur dəyişikliyi ilə izah olunur.

Məqalə ifratkeçirici YBa₂Cu₃O_{7-b} keramikasının istilikkeçiriciliyi, temperatur keçiriciliyi və xüsusi müqavimətinin tədqiqinə həsr olunmuşdur. Xüsusi müqavimət kompensasiya istilikkeçiriciliyi mütləq stasionar, temperatur keçiriciliyi isə işıq impulsu üsulu ilə tə`yin edilmişdir. Tədqiqatlar 80-300 K temperatur bölümündə aparılmışdır.

Şokil 1. YBa2Cu3O7-b keramikasında istilikkeçiriciliyi və xüsusi müqavimətin temperatur asılılığı.

İFRATKEÇİRİCİ YBa;Cu;O; KERAMİKASININ İSTİLİK XASSƏLƏRİ


İfratkeçirici $YBa_2Cu_3O_{7-b}$ keramikasının elektrik xassələrinin tədqiqinə çoxlu işlər həsr olunduğu halda, onun istilikkeçiriciliyi ancaq [1-5] işlərində öyrənilmiş, temperatur keçiriciliyi haqqında isə mə`lumat yoxdur. 1-ci şə-kildə tədqiq etdiyimiz nümunələrdən biri üçün xüsusi müqavimətin və istilikkeçiriciliyin temperatur asılılığı verilmişdir. Yuxarı temperaturlarda istilik selini hesablayarkən istilik şüalanmasının nəzərə alınması çətin olduğu üçün istilikkeçiriciliyin temperatur asılılığı 80-180 K temperatur bölümü ilə məhdudlanmışdır. Şəkildən göründüyü kimi xüsusi müqavimət (ρ) 92 K-dən yuxarı temperaturlarda xətti asılı olub (əvvəlki işlərdə olduğu kimi), keçid temperaturu bölümündə kəskin surətdə azalır. İfratkeçiricilik halına keçid temperaturu 92 K, keçidin eni isə $\Delta T_c \approx 2K$ -dir.

Nümunə 180 K-dən 90 K-dək soyudulduqda istilikkeçiriciliyi, demək olar ki, sabit qalır, sonrakı soyuma zamanı isə artır. Keçid temperaturunda istilik keçiriciliyi elə bir dəyişikliyə uğramır. Vıdeman-Frans qanunundan ($\chi_{el} = LT \mid \rho$, L = 2, $4 \cdot 10^{-8} vt \cdot OmK^{-1}$ -Lorens ədədi) və xüsusi müqavimətin təcrübi qiymətlərindən istifadə edərək elektronların payına düşən istilikkeçiriciliyini hesablamış və onun 100-180 K temperatur bölümündə ümumi istilikkeçiriciliyinin 3%-ni təşkil etdiyini müəyyənləşdirdik. Beləliklə, tədqiq etdiyimiz maddədə istilikkeçiriciliyi və onun temperatur asılılığının fonon prosesləri ilə sıx bağlı olduğunu söyləmək olar. Debayın

 $\chi = \frac{1}{3}C_9 v l_{ef}$ (v-səsin kristaldakı sür'əti) düsturundan və istilik tutumunun [6] işində verilmiş qiymətlərindən istifadə edərək fononların sərbəst yolunun uzunluğunun effektiv qiymətini tə'yin etsək görərik ki, o, qəfəs sabiti tərkibindədir (100 K-də \approx 0,013 mkm) və kristaldakı dənəvari həcmlərin effektiv ölçülərindən (\approx 30 mkm) çox-çox kiçikdir. Bu onu göstərir ki, fononların səpilmə prosesi dənəvari həcmlər daxilində gedir. Keçid nöqtəsindən yuxarı temperaturlarda ($T > T_k$) istilikkeçiriciliyin temperaturdan asılı olmaması, $T < T_k$ olduqda isə onun (χ -nın) artması [5]-də göstərildiyi kimi elektron-fonon qarşılıqlı tə sirinin mövcudluğu ilə izah olunur.

2-ci şəkildə tədqiq olunan nümunənin temperaturkeçiriciliyinin temperatur asılılığı verilib. Temperaturkeçiriciliyi həm qızma, həm də soyuma zamanı ölçülmüşdür. Şəkildən göründüyü kimi otaq temperaturundan 200K-dək a demək olar ki, dəyişmir. Nümunə 200 K-dən 120 K-dək soyudulduqda a 20% artır. 120-100 K temperatur bölümündə isə temperaturkeçiriciliyi anomal dəyişir: a-nın qiyməti 103 K-də və 113 K-də minimumdan keçir. Daha sonrakı soyumada a kəskin surətdə artır. Maraqlı cəhət ondadır ki, T_k -keçid temperaturu ətrafında, $\chi(T)$ asılılığında olduğu kimi, a(T) asılılığında da elə bir xüsusiyyət müşahidə olunmur. Təcrübəni temperaturun əks istiqamətində (yə'ni qızdırmaqla) apardıqda anomal bölümdə histerezis müşahidə olunur: 103 K-də dönən, 113 K-də isə dönməyən anomallıq müşahidə olunur. 113 K-dəki minimum ola bilsin ki, maddənin

fazaca qeyri-bircinsliyi ilə əlaqədardır. Lakin 103 K-də a(T) asılılığında müşahidə olunan xüsusiyyət və histerezisin mövcudluğunu göstərir.

Şokil 2. YBa2Cu3O7-b keramikasında temperaturkeçiriciliyin temperatur asılılığı.

Temperaturkeçiriciliyin 103 K-dəki minimumu, bu keramikanın digər xassələrində, xüsusən səsin sür'əti, elastiklik modulu [7], xətti genişlənmə əmsalı [8], qəfəs sabiti [9] və istilik tutumunda müşahidə olunmuş anomallığa uyğun gəlir. Bütün bunlar ola bilsin ki, həmin temperatur bölümündə oksigen vakansiyalarının nizamlanması ilə bağlıdır.

Ədəbiyyat

- Wu.M.K., Asburn I.R., Torng C.T. Phys. Rev. Lett, 1987, 58, p. 908.
- Мерисов Б.А., Хаджай Г.П., Оболенский М.А., Гавренко О.А. Физика низких температур, н.6, 1988, т.14, с.643-646.
- Gottwick U., Held R., Sparn S., et al. // Europhys. Lett., 1987, 4, n.10, p.1183-1188.
 - Uher G., Kulser A.B. // Phys. Rev. B, 1987, v.36, n.10, p.5680-5682.
- Morelli D.T., Hirmans I., Swets D.E. // Phys. Rev. B, 1987, v.36, n.7, p.3917-3919.
- 6. Гавричев К.С., Горбунов В.Е., Коновалова И.А., Лазарев В.Б., Тищенко Э.А., Шаплыгин И.С. Изв. АН СССР, Неорг. материалы, н.2, 1988, т. 24, с.343-345
- 7. Головашкин А.И., Данилов В.А., Иваненко О.И., Мицен К.В., Перепечко И.И. Письма в ЖЭТФ, н.7, 1987, т.46, с. 273-275.
- 8. Амитин Е.Б., Бессергенев В.Г., Варченко А.А., Ильясов С.Ш., Шкредов Ю.А. Тезисы докл. VIII Всесоюзной конф. по теплофизическим свойствам веществ, Новосибирск, 1988, часть 2, с.219.

İFRATKEÇİRİCİ YBaşCuşOzə KERAMİKASININ İSTİLİK XASSƏLƏRİ

- 9. Головашкин А.Н., Иваненко О.Н., Лейтус Г.Н., Мицен К.В., Карпинский О.Г., Шамдай В.Ф. Письма в ЖЭТФ, н.8, 1987, т.46, с.325-327.
- 10. Голобов Е.М., Прыткова Н.А., Томило Ж.М.. Шиманская Н.М. Тезисы докл. VIII Всесоюзной конф. по теплофизическим свойствам веществ, Новосибирск, 1988, часть 2, с.213.

Д.Г. Араслы, Р.Н. Рагимов, И.А. Исманлов, И.Х. Мамедов, В.М. Алнев

ТЕРМИЧЕСКИЕ СВОЙСТВА СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ *YBa₂Cu₃O_{7-b}*

Исследованы коэффициенты теплопроводности и температуропроводности сверхпроводящей керамики YBa₂Cu₃O_{7-b} в области температур 80-300 К. Показано, что фононное рассеяние при 100-180 К происходит, в основном, внутри гранулированных объемов. Наблюдаемая аномалия при 103 К в температурной зависимости температуропроводимости связана со структурным изменением.

D.H.Arasly, R.N.Ragimov, I.A.Ismayilov, I.Kh.Mamedov, V.M.Aliyev.

THERMAL PROPERTIES OF SUPERCONDUCTION YBa₂Cu₃O_{7-b} CERAMIC

Thermal conductivity and thermal diffuzivity coefficients have been determined for YBa₂Cu₃O_{7-b} superconductive ceramic at 80-300 K range. It is shown that phonon scattering occurs in the intraranuler volume at 100-180 K. An anomaly associated with the motter structural alteration is abserved at 103 K in the thermal diffusivity temperature dependence.