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SL(3,C)-GROUP ELEMENT SOLUTION OF YANG-MILLS SELF-DUALITY
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The group element solutions of the Yang-Mill's self-duality equation are constructed by means of discrete symmetry

transformations for the algebra SL(3,C).

1. The problem of constructing the instanton solutions of
self-dual Yang-Mills equations in the explicit form remains
important for the present time. This problem is solved only
for the case of SL(2,C) algebra and for instanton number not
greater than two. The famous ADHM ansatz [1] gives the
qualitative description of instanton solution but not its
explicit form. Two effective methods of integration of SDYM
for arbitrary semisimple algebra has been proposed in series
of papers [2]. Another, the discrete symmetry transformation
approach has been suggested [3] that allows to generate new
solutions from the old ones. This method has been applied to
many cases, for instance, the exact solutions of principal
chiral field problem were obtained in [4].

This work must be considered as a continuation of the
paper [5] where the discrete symmetry transformation method
has been applied for deriving the exact solution of Yang-
Mills self-duality for the case of SL(3,C) algebra. The pur-
pose of the present paper is to do the same for group-valued
element what is important for applications.

2. Let us remind the basic statements from [5].

Self-dual equations are the systems of equations for the
parameters of a group element G considering as the functions
of four independent arguments z, z ,y, ¥
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where G.=4,G.

The system of equations (1) can be partially solved
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where the element £ takes -values in the algebra of
corresponding group.
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System of equations on £ has the following form
f; + fyy + [f,, fy] =0 3)

Following [3], for the case of a semisimple Lie algebra
and for an element £ being a solution of (2), the following
statement takes place:

There exists such an element S taking values in a gauge

group that
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Here X, is the element of the algebra corresponding to its
maximal root divided by its norm, — £_ - is the coefficient
function in the decomposition of £ of the element
corresponding to the minimal root of the algebra,
£ = ofc ' and where o is an automorfism of the algebra,
changing the positive and negative roots.

In the case of algebra SL(3,C) we’ll consider the case of
three dimensional representation of algebra and the following
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The discrete symmetry transformation, producing new
solutions from the known ones, is as follows:
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Using (2) the relations (5) can be rewritten in terms of group-valued element as

(8,09,):(5,09.)" = (£,.1),

where

@)oo = (5), . @), = ().

~(£,01).
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So we see that the group valued elements g,,; and g, are
connected by the relation

gn+1 = Snagn (6)



3. Let's represent the explicit formulae of the recurrent
procedure of obtaining the group-valued element solutions of
the self-duality equations in the case of SL(2,C) algebra .

At every step, as it shown in [S], S is upper triangular
matrix and can be represented in the following form:

Sn exp(ﬂl )n X1+ exp( l,Z)n X;,2 exp(ﬂZ )n X; eXp(,BO )n H
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where H=h,+h; and for g, we use the following parameterization:

gn = eXp(nl+ )nX1+ eXp(n;,z)nX;,z eXp(ﬂ; )nX; eXp((tz )by + (tZ)nh2) x ®
x expl; ), X; expln.), %, expl; ), x;

with

go; = exP(n; )oX; éXp(n;,z)aX;,z exp( ;)oX; eXp((t1)oh1 + (tz);)hz)

as an initial solution. Following the general scheme from [5] and using (2) and
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Here, ali ,a g , allj - chains of solutions of self-duality equations determined by formulae (10-13) from [5].
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SL(3,C)-QRUP ELEMENTI UCUN YANQ-MILLS AVTODUALLIGIN HOLLi
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SL(3,C)-cebri hallinda diskret spektr metodu vasitesile qrup elementi iigiin avtodualhin Yanq-Mills tenliyinin helleri tapil-
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