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Using the double barrel graph theory, the algorithmic method for determination of characteristic polynomial coefficients of system
nonlinear kinetics equation of biochemical reactions is offered. Several characteristic polynomial coefficients are expressed by stoichiometric
coefficients of reagents in the biochemical reaction system and their analytical expressions are obtained.
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INTRODUCTION

At last time, theoretical methods for solution of kinetic
problems based on linear graph theory, are widely used in
biokinetic studies [1-8]. Linear graphs are used at analysis of
the steady- and pre-steady-state (transient phase) of enzyme
reactions with a single enzyme form participating in each
elementary reaction. In linear mechanisms, the enzyme forms
do not interact with each other at any stage. Moreover, each
stage of the enzyme reaction in the transient phase according
to assumption is a pseudo-first-order reaction because a
change of the substrate concentration is negligible during the
formation of intermediate enzyme forms.

In living cells, concentrations of many enzymes are often
of the same magnitude, as concentrations of the metabolites,
ie. compounds participating in the elementary stages at similar
concentrations are equivalent components of elementary reactions
in many cases. Such systems are nonlinear. Development of
more simple and convenient methods for research of stability
of stationary states in nonlinear kinetic systems has not lost
the importance. An attraction of the theory of double barrel
graphs [9] (bigraphs) allows essentially to simplify the research
scheme of stationary state stability.

BASIC DEFINITIONS AND THEORETICAL
TREATMENTS

Two types of tops are used in representation of double
barrel graph theory, where substances (reagents) are tops of
the type A, and reactions are tops of the type B. Tops of
different types aré connected with oriented branches. The
branch going from the substance, participating in the
reaction, and other branch going from the reaction to the
substance, which is produced as a result of this reaction, form
a “positive” pathway. Graphically it is represented as
A;—»B,—A;, where A is the top - substance, B, is the top -
reaction. Two branches going from two substances, participating
in the same reaction, make a “negative” pathway,
A;—>B,«A;. The closed sequence of ways forms the “cycle".
Parity of a cycle is determined by the parity of a number of
negative pathways in it. Unity of non-crossed on tops A
cycles and branches, going from the substance to the reaction,
is called as a "subgraph”. The number of tops A in "subgraph" is
called to as his "order". The m — order "fragment" is m reactions
chosen from the scheme, considered in relation to chosen m
substances. Other substances not participating in chosen

reactions, do not enter in the "fragment" and are considered
as constants. "Fragment" of the scheme refers to "critical" if
the sum of coefficients of all his "subgraphs", containing odd
number of "even" cycles, is more than the sum of coefficients
of all other subgraphs. Subgraphs with odd number of even
cycles give the negative contribution to the coefficients of a
characteristic polynomial and are the reason of instability.

Stability of the stationary state is investigated by linearization
of nonlinear kinetic equations near stationary points.
Eigenvalues governing the behavior of the system near these
steady states are solutions of the characteristic equation |11 -~J=0,
where A is an eigenvalue, I is the unit matrix, J is the
Jacobian. Stability is provided, if the Jacobian matrix for
system of kinetic equations with elements:

Ty =D ¥4,00,/0u,
k=1

has eigenvalues with negative real parts. Here, m is the
number of reaction stages, ¥ =8ix—@:ix , Bix and a;, are
the stoichiometric coefficients (numbers of molecules of the
compound U; generated and going into the k-th reaction,
respectively), u; is the concentration of the i-th compound,
v, is the rate of the k-th reaction. If even though one of
coefficients «; of the characteristic polynomial Jacobian
matrix of the reaction system

P=A"+a A"+ a,A"%+. . + a, (N

(where m corresponds to the rank of the y;, matrix of the
reaction system) changes its sign from plus to minus, when
the reagent concentrations are changed, then the steady state
of the system becomes unstable. According to Ivanova [10],
if the lower coefficient (&) is negative and there are not
steady-state points on the border of the polyhedron of
invariance, determined by the material balance equations in
the phase space, then there should be several steady-state
points within the polyhedron (multiple steady states).

If o,>0 at any concentration, then there is a single steady
state point (if boundary conditions are fulfilled). In this case,
if another coefficient a,-x<0 (k<m), the single steady state
point can be unstable. A stable limitary cycle, i.e. self-
oscillations, occurs in the vicinity of this single unstable
steady-state point.

Thus, the analysis of existence of critical regimes is
related with coefficients of the characteristic polynomial (1).
The stage of determination of characteristic polynomial
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coefficients is the most toilful stage in the analysis of For this aim let’s rewrite elements of the Jacobian matrix
nonlinear systems. In this work, we offer an algebraic in the form:
algorithmic method for determination of these coefficients by

using of bigraphs. |

(,Bik—aik)auk/auj=z { (B 00, /0u;—a,0v, / Ouy), .+ (7,00,/0u;),_;} =
k=1

(P, + Nj, + H/)

1

Jyy= ;
=2
k=1

where, ;
ov ov ov
K k ko _ x k _ k
Pji'—'ﬂik‘é—" ’ Nji = _aik'a""' r Hy =75 5— @
uy u; u,
From the point of view of the double barrel graph theory, I X ov 3
.. . k. H = -, —
these quantities have a real topological sense: Pj;is the i * ou.
2

positive pathway from A,-top to A;-top through Bj-top, i.e.
the pathway corresponds to the generation of compound i in This expression is true only for non-autocatalytic
the reaction k; N ;.(i is the negative pathway from A,- top to  reactions.

) If the reaction proceeds according to the mass action law,
A;-top through B,-top, i.e. the pathway corresponds to ie., if

interaction of compounds 7 and i in the reaction k; H f is the v, = K U ;z.lk .. u:nk
half-pathway (or segment) of compound 7 involved in the

reaction k. Here it is necessary to note that in non-
autocatalytic reactions f;; =0 at a;;#0 and therefore in this
case we obtain the value for half-pathway as in {11]:

where K, is the rate constant of k-th reaction stage, then
expressions for pathways and half-pathways are simplified:

v 1y L
Piﬁ' = aikﬂjk = ; ij = 0y £ ; Hf = 07 £ 3
u, Uy uy
(vy is the rate of the stage k, u; is the concentration of the - a; is the sum of all twin products of all nodal polynomials, i.e.,
i—th compound). a, is determined as the sum of contributions of all possible
Let’s write the sum of elements of the i-th column of the  two-order “subgraphs”:
Jacobian matrix. This sum will be called by the nodal polynomial
for the i-th A-top of a bigraph. The nodal polynomial is n N
equal to the sum of all pathways (positive and negative) and a, =Z Z MM, (i # _7) (6)
half-pathways originating from the given i - th A-top: i=1 j=1
n m - a3 is the sum of all triple products of ali nodal polynomials,
Mi = (PlkJ +N fj +H f) @) ie., o; is determined as the sum of contributions of all
3=1 k=1 possible three-order “subgraphs”:

For the determination of coefficients ; of the characteristic Rak ek« L .
polynomial (1), using the conception of the nodal polynomial, we & —; ; ; MM jM k (l;tj s 1%k, J ¢k)’ etc.

offer following rules of determination:

- a; is the sum of all half-pathways originating from all Some of members obtaining in these products are equal to

nodes with the negative sign, i.e., @; is determined as the  ;ery These members are determined by following rules of
sum of contributions of all possible first-order “subgraphs”: “member reduction”: '

Q)

. - a product where the index of one B —top presents more than
n m* .
_ x once is equal to zero;
a = _Z Z H; G . products where pathways do not form cycles (determined by
1 k=1 p
i=1 k= lower indices of the pathways) also are equal to zero (cyclic
products are included into the sum with the opposite sign);
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- members corresponding to the product of the pathway and
the half-pathway are equal to zero.

EXPRESSION OF POLYNOMIAL COEFFICIENTS
VIA STOICHIOMETRIC COEFFICIENTS OF
REAGENTS

The above-stated rules allow us to express coefficients o;
of the characteristic polynomial (1) through stoichiometric
coefficients of reagents. Really, taking into account (3) and
(4) in (5), we obtaine for a;:

n m
a, = Z Z &Y ik

i=1 k=1

=1 .Sl

[ e

®)

Other coefficients are expressed through stoichiometric
coefficients with point of view of reduction rules. In the
present work, results of calculations for characteristic polynomial
coefficients a, ,@; and e, are presented:

n n U_kl ﬁkz
a, = Z z i, P, (Vi V 56, = Vi,V i, = = ki#zky, k=1, 2..m, k,=1,2..m %)
i=1 j>1 TR
n n n ‘ n : . ‘Uk Uk 'D'k
a; = Z Z Z by, b;, = Z by (by; + by,)p =+ —F+ — (10)
i=1 3>i |[1>3 1#i,3 el Uy

where
by, = Qi Cix , X, >

by, = ViV ik, ¥ 1,
by; = Vik,V 35, 1k, »
b34 = 7ik37jk1}’1k2 s k]#kg#kg, k1=1,2...m,, k2=1,2...m, » k3=1,2...m.

For the coefficient a,; we obtaine:

n n n n n n n n ﬁk U—k Uk ﬁk
Q, =Z Z Z Z b41b42" Z b41b337hk,+ 2 b41b347hk,+z b41(b43_b44) ﬁ_‘_‘i—‘
i=1 751 |1>j h>l 154 \n>l h#i,j,1 h>i uuu i,
here, Iin’ceraction causes destabilization of a stationary state and it
can be the reason of existence of multi steady state and/or
b.. = b.a self-oscillation regimes in reaction system.
41 317" hky In some relatively simple cases, the obtained expressions
b, = b31ahk‘ , of polynomial coefficients allow to predict kinetic behavior
of a system without necessary calculations. For example, let
b =y ik, Y 35,V 1,V iy 5 us consider the problem of existence of self-oscillation
b, = Yix,Y s ¥ 1, by regimes in three — component nonautocatalitic biochemical

ki=k ok s#ky , k1=1, 2. m,
ko,=1,2.m , k3=1, 2.. m, ky=1,2.. m.

In this formulas D, , and U, are the stationary rate of k-th

reaction and the stationary concentration of i-th reaction
component, respectively.

At necessity it is possible to obtain corresponding
expressions also for other coefficients. For this purpose it is
necessary to express nodal polynomials through stoichiometric
coefficients and to reject members which are equal to zero on
the appropriate items of the reduction rules. It is necessary to
note that the negative members in the obtained expressions of
characteristic polynomial coefficients express contributions
of destabilizing interactions in the reaction system.
Contributions from cyclic fragments in the structure of the
reaction graph are such. If the sum of negative members is
more than the sum of positive members then the appropriate
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systems. From the formula (8) it follows, that for all nonauto-
catalitic reactions a;>0. The sign of the second coefficient
is determined from (10) and it is obvious, that for ordinary
biochemical reactions, where at each elementary stage no
more than two various components participate, @,>0. This
reason leads to the following conclusion: Self-oscillations are
impossible in three-component nonautocatalitic, biochemical
systems in range of the first-order approximation of stability.
As an example of illustration of the offered approach we
shall consider the following system of reactions. It is the
scheme of the well-known substrate inhibition reaction.

E + 8 = ES (rl)
ES >E+P (r2)
ES + § —» ESS (r3)
ESS ~» ES +8 (r4)
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In this system there are 4 interacting substances (A-tops)
and 4 reactions (B-tops). In the representation of the double
barrel graph the considered system is represented as:

In this figure, letters in circles (A-tops) mean reagents,
and figures in squares (B-tops) - the reactions. The arrow
going from i-th A-top to j-th B-top means the entry of the
i-th reagent in j-th reaction. The arrow going from ;-th B-
top to i-th A-top means formation of i-th reagent at the j-th
reaction. ’

For the research of nonlinear kinetics of the given
reaction system we shall write matrixes of stoichiometric
coefficients, B;;, a;; and y;; (i=1... 4, number of interacting
reagents, and j=1 ... 4, number of reactions):

Bi; a;; = Yij
s poo1| 1010 |1 0-11
E [0100{ 1000 -1 1 00
Esltoo1| 110 T |1-1-11
ESSloo 10 0001 00 1-1

It is easy to show that the rank of y; matrix is equal to 3. |

D, + U,

It means, that in the system there is one balance equation,
and only 3 from 4 variable of concentrations of reagents are
independent. It is obvious, because the total enzyme
concentration must conserve:

E+ES+ESS=E,=Const. (11)
Therefore the characteristic polynomial of the system
will be in the third order:

3 2
P=2+al +a,d + a

On the other hand, it is easy to show, that on border of a
polyhedron of the invariance, determined by the equation
(11), there are no stationary points, i.e. there is no a
stationary point, where concentrations of some reagents are
equal to zero. Therefore if @3>0 then the stationary point of
the system is unique. However if a3<0 and other coefficients
are positive, then in the system multiple stationary points are
presented, i.e. poly-stability takes place. If a;>0 and at least

one of other coefficients (@; or a,) are negative, then
sustained oscillations arise around this stationary point. Let

coordinates of a stationary point will be (L—z;, Uy, Uz, Uy )

We shall proceed now to definition of coefficients a;.
They are determined from the 4x4 dimensional determinant
of the Jacobian matrix. Really, we are interested only in
signs of these coefficients and arising in these coefficients
negative components cause interest with the point of view of
a possibility of critical phenomena in the kinetics of given
system. According to formulas (8-10) we obtaine:

> (20,0, + D,D, + D,D,) > 0

a;, = - + - — > 0
Uy : ; TRC P u,
D,D. 0,0, D,D. D, D,D,

al = _;1;3 + _-1—4 + _1—2 + ’—1_4 + _2—4 + —
u,u, u,u, u,u;, u,u, u,u, u,u,
o0, [0, U

a; = =\ T =
u,u, u,.

We see that, coefficients @, and «, are positive at any
positive values of concentration of reagents. It means, that
sustained oscillations in the considered system are
impossible. However, there is an opportunity for existence of

the multi-stability. It is possible, if T,<d, , since in the
stationary state 0;<0, and therefore, @3 < 0. This conclusion

can seem unusual, because in many models the multi-
stability and self-oscillations coexist and are realized by
change of kinetic parameters. This example shows that there
are systems admitting multi-stationarity and not admitting
self-oscillations. In this example our purpose is to show the
certain advantage of the offered method of the analysis of
nonlinear kinetics of biochemical reactions. Therefore we do
not stop on the analysis of a condition of multi-steady states
in the considered system. However we would like to note,
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that this obtained condition of multi-stability not always hits
to an eye at research by other methods.

CONCLUSION

The obtained expressions of polynomial coefficients can
seem as complicated at first glance. However, they are, much
more simple in comparison with other methods [10,12] and
they are easily programmed on electronic means of
calculation. ‘

Moreover, the offered method for the determination of
characteristic polynomial coefficients has the important
advantage: this method allows to distinguish the fragments,
which are the critic fragments. In other words, above-stated
facts allow to see, that interaction of what reagents in what
stages of a reaction are destabilizing factor for the stable
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stationary state. It is very important for the understanding of
the molecular basis and mechanisms of non-ordinary behavior of

biochemical reaction systems.
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S.Q. Bayramov Ty

BIOKIMY®VI REAKSIYALARIN QEYRI-XOTTI KINETIKASININ
QRAF-NOZORI ANALIZ METODU

ki lileli qraf nezeriyyesinin tetbiqi ile biokimyevi reaksiyalarin kinetikasinin qeyri-xetti tenlikler sisteminin xarakteristik
tenliyinin amsallarinin tapilmasi metodu verilmisdir. Bu emsallardan bezileri reagentlarin stexiometrik emsallari ile ifade olunmus ve

onlarm analitik ifadeleri alnmigdir.

HI.K. Baiipamos

FI:ACD-TEOPETI/I‘{ECKHﬁ METOJ AHAJIM3A
HEJMHENHON KNHETUKN BUOXUMHWYECKHAX PEAKIIAN

C TNPHUMEHEHHEM TEOPHH OBYZOJIBHBIX rpacbos NPEeISIOKECH MCTOH OIpPCACNCHUA KOB(bQ)PIuPICHTOB XapaKTCPUCTHICCKOI0 yPaBHCHHA
CHCTEMBI HETTMHEHHBIX KHHETHYECKUX ypaBHeHm‘i 6HMOXUMHYECKUX peaxunﬁ. HCKOTOPBIC H3 3THX KO3(1)(1)PIHHCHTOB BBIPAKEHBI CTEXHOMET-
PHYCCKUMH KO3(1)(1)PILIHCHT3MH PE€ar¢HTOB ! NMOMYYEHB! HX aHATUTHICCKHAC BRIDAKCHHUA.

Received: 25.09.01



