THERMOSTIMULATED CONDUCTIVITY IN ZnGa2Se4

A.G. SULTANOVA

346K is observed.

exists between

condition is performed

of trap levels as 0.24 eV.

Institute of Physics of the Azerbaijan National Academy of Sciences H. Javid av. 33, Baku, 370143

Thermostimulated conductivity and trap levels were investigated in ZnGa₂Se₄ monocrystals. It was shown that the quick recombination mechanism is realized in ZnGa₂Se₄ monocrystals.

compounds are characterized by the high photosensitivity, dazzling luminescence, weak dependence of their properties on external factors, high stability of time characteristics. Moreover, complex chemical composition, presence of two types atoms in cation sublattice form a rich spectrum of the local centers in the gap band. However, their nature and energy spectra in fact have not been investigated. That is why, complex investigation of their physical properties is actual. It is known that the method of thermostimulated conductivity (TC) is widely used for definition of the recombination mechanism, spectrum of local states and parameters of traps in wide-band semiconductors. In spite of some works [1-4] dedicated to investigation of optical spectra of ZnGa-Se₄, spectra of local states in practice have not been investigated. There is only one work [5]

which presents results of TC in ZnGa2Se4. Authors of the

work [5] observed the TC maximum at 120K with the

broadened edge in the high temperature range and

Tetragonal compounds with the common chemical A²B₂³C₁⁶ formula attract an attention owing to their

perspective for use in semiconductor devices. These

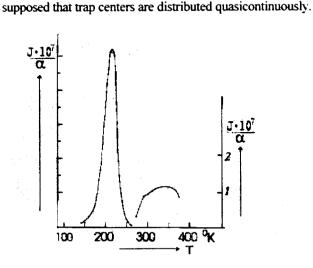


Fig. 1. Spectrum of the thermostimulated conductivity in ZnGa₂Se₄.

 I.A. Beun, R. Nitsche, M. Sichensteiler. Physic, 1961, v.27, No.3, p. 448-452.

[2] Whe-Tek Kim, Chang-Sub Chung, long-Geum Kim, Moon-Seig Jin Hyung-Gon Kim. Phys. Rev. B., 1988, v.38, №3, p. 2166-2168.

[3] Yong-Geun Kim, Wha-Tek Kim, Jin Sup Kim, Dong Sung Ma, Hong-Lee Park. Phys. Rev. B., 1989, v.39, №12, p. 8747-8749.

In this paper the results of TC investigation in ZnGa₂Se₄ are presented with the purpose of determination of the spectrum of local states and the recombination mechanism.

For realization of TC measurements the

monocrystalline samples of ZnGa₂Se₄ were obtained by

the gas transport reactions method. The crystal of iodine was used as a transporter. Lattice parameters $a=5.496 \text{\AA}$, $c=10.99 \text{\AA}$, c/a=2 were determined by the X- ray method. In the fig.1 the TC spectrum of ZnGa₂Se₄ is represented. In TC spectrum the maximum at 219K and wide line in the interval 240÷400K with the maximum at

In common case for clearing up of the recombination mechanism relationships $\delta' = T_{MT}T_{I}$ and $\delta'' = T_{TT}T_{M}$ are used, where T_{M} is the temperature at the maximum of TC, T_{I} and T_{2} are temperatures where the conductivity reaches half of its value on growing and falling down wings of the TC maximum [6]. In the case, when the condition $\delta > \delta''$ is fulfilled, the quick mechanism of recombination is realized, if $\delta' < \delta''$ then the slow mechanism is realized and in case $\delta' = \delta'' -$ the mixed mechanism of

recombination is fulfilled. In the case of the quick

mechanism of recombination, when the quasiequilibrium

 $\delta \geq e^{-l}(1 + 2kTm/E_l) \tag{1}$

trap levels and conduction band, the

where $\delta = (T_T T_m)/(T_T T)$, E_l is the depth of the trap levels. Analysis of the TC maximum at 219K showed that conditions $\delta' > \delta''$ are performed, that is the quick mechanism of recombination exists in ZnGa₂Se₄. Therefore by use of the formula (1) we estimated the depth

Presence of the wide TC maximum in the range 240÷400 K with the maximum of 346 K testifies that the gap band in ZnGa₂Se₄ has a few near disposed trap levels in this range of temperature.

[4] M.Turowski, A. Kisiel. J. Phys. C., Solid State Phys., 1984, v.17, №25, p. 1661-1664.

[5] S.J. Radautsan, J.M. Tiginyanu, V.N. Fulga, Yu.O. Derid. Phys. Stat. Sol. (a), 1989, 114, p. 259-263.

[6] K.H. Nicolas, J. Woods. Brit.J. Appl. Phys., 1964, v.15, №7,p. 783-785.

A.G. SULTANOVA

A.Q. Sultanova

ZnGa2Se4 MONOKRİSTALLARINDA TERMOSTİMULƏ KECİRİCİLİYİ

ZnGa₂Se₄ monokristallarında termostimulə keçiriciliyi (TSK) tədqiq olunmuşdur və tələ səviyyələri təyin edilmişdir. Göstərilmişdir ki, ZnGa₂Se₄ monokristallarında sürətli rekombinasiya mexanizmi realizə edilir.

А.Г. Султанова

ТЕРМОСТИМУЛИРОВАННАЯ ПРОВОДИМОСТЬ В ZnGa-Se₄

Исследованы спектры термостимулированной проводимости монокристаллов $ZnGa_sSe_t$. Определены глубина залегания ловушечных уровней. Показано, что в $ZnGa_sSe_t$ реализуется быстрый механизм рекомбинации.

Received: 11.02.02