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ENERGY SPECTRUM OF SUPERLATTICE IN MAGNETIC FIELD 
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An expression defining energy of electron in superlattice with thin conducting layers in magnetic field is solved. The magnetic field is in 

layers plane. A potential of the superlattice is defined as δ-functions. Influence of weak magnetic field on minizone spectrum is investigated. 
It was shown that the influence of magnetic field leads to slight shift of minizones. 

 
Many theoretical and experimental investigations of 

electron spectrum of heterostructures, in which a magnetic 
field was directed along semiconductor layers containing 
two-dimensional electron gas, have been fulfilled. For 
example, a spectrum of quantum wells systems in magnetic 
field was investigated theoretically in works [1,2]. An 
electron mass, connected with movement along the axes of 
GaAs-AlxGa1-xAs superlattice, was experimentally investigated 
in work [3] using the cyclotron resonance method. 

The modern technology allows to make superlattices with 
thickness of layers of a few or even of one inter-atomic 
distance. In this case one can use the model of potential of 
superlattice being chosen as δ-functions. 

The aim of the present paper is to investigate influence of 
magnetic field directed along the layers of superlattice, on the 
electron minizone spectrum within the framework of the δ-
potential model. 

The axes of the superlattice is chosen along x-axes. The 
magnetic field in layers plane is chosen along y-axes. The 
vector potential is chosen as follows A=(0, 0,-Bx). In the 
approximation of effective mass the Schrodinger equation is 
the following: 
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where u(x)=(h2Ω/m)⋅δ(x-n⋅d), d is the period of the 
superlattice, Ω is potential   power, n= 0, ±1, ±2,… is the 
number of a dielectric layer. 

The wave function may be written in the following form: 
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Substituting (2) into equation (1) we obtain the following 
equation: 

 

0
m2

k2h
e)x(u)xx(

ml2
h

xm2
h 2

y2
4

2

2

22

=





















−−+−+

∂
∂

− ϕϕ
ϕ

, 

             (3) 
where  l={ch/eB)1/2   is the magnetic length, x=l2kz is the 
center of electron orbit in the magnetic field. 

We shall make the following replacement of variable: 
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As a result the equation (2) will obtain the following 
form: 

             ( ) ( ) 0U
4

2

2

2

=







−+−

∂
∂

ξΦξε
ξ

ξ
,            (5) 

 

where
2

22
y

2

h
ml

m2

kh
E 










−=ε ,     

    ( ) 





−+=

1
dn2

12U
2/1

2/1 ξξδΩξ .   

By 
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dn2 2/1

+−≠ ξξ  the equation (5) has the following 

form: 

                0
42

1
p

2

2

2

=





−++

∂
∂

Φ
ξ

Φ
ξ

                (6) 

 

where p=ε- ½. 
It is well known equation for the parabolic cylinder 

function and it has t he following common solution: 
 

                      Φn=AnD p(ξ)+BnD(-ξ),                            (7) 
 

where Dp is the parabolic cylinder function, n is the number 
of conducting layer which is defined by the following 
inequalities: 
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The border conditions for the functions Φn are defined by 
the system of the following equations: 

 

                 Φn(ξn+0) = Φn-1(ξn-0)                             (9)  
 
              Φ′

n(ξn+0) = Φ′
n-1(ξn-0) +λΦn-1(ξn) 

                                                                                                    

where ηξξ nn +−=  , λ=21/2Ωl, η=21/2d/l. 

In x-axes  ξn corresponds to coordinates of the dielectric 
layers x=nd. 

 Subscript n at the function Φn(ξ) is defined by the 
inequalities (8), and corresponds to the conducting layer  
nd≤x≤(n+1)d. 

We have from the Bloch theorem: 
 

                   Φ0(ξ)=A0Dp(ξ)+B0Dp(-ξ)                  (10) 
 

Φ1(ξ) = dxik
e [A0Dp(ξ-η) + B0Dp(-ξ+η)                         
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Substituting (10) into the border conditions (9) one can 
obtain an equation for the electron spectrum taking into 
account that 

Dp(x) Dp
′(-x) - Dp(-x) Dp

′(x) = 2π/Γ ,   where Γ is gamma 
function                                                                            
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where D=(2π)1/2/Γ(-p). 
Let us consider a weak magnetic field so that d<<1.  
Having chosen the center of the electron’s orbit x  inside 

the area (0,d) we shall obtain:  
 

                                1,1 <<ξξ .                                (12) 

 
The parabolic cylinder function we can represent in the 

form of the following combination of degenerated 
hypergeometric functions: 
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where the hypergeometric function is represented by the 
following row: 
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Taking into account (12), representing p=ε-1/2 and 
assuming that ξ1 ε1/2, ξ ε1/2 ≅ 1 while calculating the 

expression for the spectrum we shall keep all members 
proportional to the quantities  (ξ1 ε1/2)k, (ξ ε1/2)k,  where k=1, 
2, 3,… 

After a long calculation we shall obtain: 
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where K, L and M unwieldy expressions of the order of unit. 

We shall define χ=(2m)1/2 (E-h2k2
y/2m)1/2/h and take into 

account that ε1/2η=χd, λ/2ε1/2=Ω/χ. By neglect of the 

members 4
1ξ  and 

4ξ  in the expression (14) at the limit B→0, 

we obtain the standard expression of the electron spectrum in 
the Dirac comb: 

 
coskxd = cosχd + (Ω/χ)sinχd     (15) 
 
Assuming that the electron spectrum doesn’t depend on 

the position of the center of electron’s orbit within the layer 
(0, d), in order to estimate influence of the weak magnetic 
field on the spectrum, we can assume that   ξ  =0. 

The equation (14) will be reduced to the form: 
 

 coskxd=cosχd+(Ω/χ)sinχd+[K(χd)+(Ω/χ)M(χd)] η4,                                                                                       
                                                                                            (16) 

                                                                                     
where K(χd) = Κ(ε1/2ξ, ε1/2ξ1), M(χd)] = M(ε1/2ξ1, ε1/2ξ) by 
ξ =0. 

We shall search a solution of the equation (16) in the 

following form χχχ += 0 , where 0χχ << . χ0 is the 

solution of (15) by k x=0 
 
               tgx = Ωd/2x,    x = χ0d/2 .                  (17) 

                                                     _ _  
Keeping the member   χα  , it is easy to obtain: 
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where the width of minizone is 
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So, the influence of weak magnetic field  leadscomes to 

the slight shift of minizones of the order of 
 

                   4∆(Ω/χ0) (d/l)4. 
 
Let us make estimation of the following quantities: χ0d, 

∆, m2/h 2
0

2χ . 

We shall consider the superlattice GaAs – Alx Ga1-x As 
with x=0.3, d= 200Å  and the width of barrier a = 50Å .  For 
such parameters the distance between conduction zones of 
GaAs and Alx Ga1-x As  is  ∆Ec=100meV   [4]. One can 
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estimate  the power of potential from the following 
expression: h2Ω/m = ∆Eca0 

So, one can define the quantity   χ0d=2.5 from the 
equation (17) for the first minizone. According to this value 
we shall obtain position of the lowest minizone 

m2/h 2
0

2χ =13.8meV. The width of the minizone is 

∆=3meV. 

Using these quantities one can estimate that the lowest 
minizone’s shift is 

 

                        36(d/l)4meV   .                              (19) 
 

Though, the expression (19) has been obtained at d<<l , 
one can suppose that at d≤l the minizone’s shift may be of the 
order of minizone’s width. 
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