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The expressions for the density of states, magnetic susceptibility, entropy, heat capacity and also for the transverse magnetothermopower 
of electron gas in a quantum well have been obtained for the cases of nondegenerate statistics and strong degeneracy. It is demonstrated that 
in the case of strong degeneracy, quantum levels lying below the Fermi level intersect the Fermi level with an increase of the magnetic field, 
which leads to jumpwise oscillations of theirs magnitude. 

 
INTRODUCTION 
 
In the past decade, numerous experimental and theoretical 

investigations have been focused on the variety of 
thermodynamic and galvanomagnetic properties of 
semiconductor dots, films and the wires [1-5]. In [1] a linear-
response theory was developed for the thermopower of a 
quantum dot of small capacitance and in the quantum regime 
of resonant tunneling and at a constant number of electrons 
on the quantum dot and the oscillations were predicted. 

Thermoelectric properties of nanowires in the magnetic 
field were investigated in [2], where the magnetic splitting of 
thermopower peaks was predicted and a scheme for 
measuring of thermopower in a circuit containing a nanowire 
and leads made from the same material was described. 
Thermopower peaks are due to the magnetic field on-and-off 
switching of the energy levels. 

The thermoelectric power and longitudinal magneto-
Seebeck coefficient of 200 nm diameter single-crystal 
bismuth nanowire were measured in [3]. It was theoretically 
calculated that bismuth nanowires should have a high 
thermoelectric figure of merit over bulk Bi, when the 
diameter become less than 10 nm. The thermopower and 
conductance of atomic-size metallic contacts have been 
studied in [4]. For contacts of atomic dimensions, abrupt 
steps in the thermopower which coincide with jumps in the 
conductance were observed. 

The electronic conductance in nanowires modeled by 
soft- and hard-wall confining potentials under the influence 
of a magnetic field and in the linear and nonlinear rate was 
investigated in [5]. The behavior of the conductance 
demonstrates a ``magnetic switch'' (on and off) effect of the 
quantum electronic transport in nanowires. 

It is assumed that a similar behavior should also be 
observed for thermodynamical parameters of electrons in the 
quantum well under the conditions of strong degeneracy. 
This assumption stems from the fact that under these 
conditions, the dependence of thermodynamical parameters 
simply reproduces the behavior of the density states at the 
Fermi level [6]. 

In the present work the density of states, magnetic 
susceptibility, entropy, electron heat capacity and 
magnetothermopower of electrons in a parabolic quantum 
well are calculated. 

At first, the expression for the electron spectrum and the 
density of states will be given, and then the thermodynamical 
parameters for the case of nondegenerate statistics and for 
strong degenerate one will be calculated. 

 
ELECTRON SPECTRUM IN A PARABOLIC 

QUANTUM WELL IN A LONGITUDINAL 
MAGNETIC FIELD 

 
For standard electron dispersion law, the sought spectrum 

can be represented in the following form [7-10]. 
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Here, the Landau gauge is chosen for the vector-potential 
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frequency, Âµ  is the Bohr magneton, g is the factor of spin 

splitting, σ=±1/2, and N is the number of the quantum level. 
The coordinate wave function which corresponds to the 

energy eigenvalue (1), has the form [8,10] 
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( )xHN - is the Hermite polynomial [11]. 

The density of states is  defined by the expression: 
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Then, by moving from the summation over k z and k y  to 
the integration and using the expression (6), we obtain 
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Therefore, we have 
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where Lx  is the well width and Ô(x) is the Heaviside function. 

 
NONDEGENERATE STATISTICS 
   
It is known that the thermodynamical Gibbs potential is 

determined by the formula 
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For the nondegenerate statistics, 
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n is the electron concentration (in our case it is two 
dimensional concentration), and 
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erf(t) is the probability integral [11], k0 is the Boltzmann 
constant. 
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From the Obraztsov’s formula for the transverse 
thermopower [13] follows that, 
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In our calculations for GaAs, we used the data from [10] 
given for the parabolic well with width Lx=4000Å, and the 

height �1=150meV, and electron mass m=0,067m0 in order to 
obtain the estimate ω0=4,437⋅1012s-1. Note that according to 
Fig.1 in [10], �1�(mω0

2/2)⋅(Lx/2)2 in a zero magnetic field. 
For InSb semiconductors we assumed that m=0,016m0, 

and Ñω0=7,5meV in accordance wit h [12]. In addition, we 
put n=2⋅1010cm-2, and 5⋅1010cm-2 for InSb and GaAs, 
respectively. The calculated dependences c(H)  and CV(H)  for 
InSb, (g=-51,2 , curve 1) and GaAs (g=-0,44, curve 2) at 
T=300 K  are shown in Fig.1 and Fig.2, respectively. 

 

                                 
 
Fig 1. The dependence of magnetic susceptibility on the 

reduced value of the magnetic field z=ωc (H)/ω0 for InSb (curve 1) 
and GaAs (curve 2) for the nondegenerate case. 

Fig2. The dependence of electron heat capacity on the 
reduced value of the magnetic field z=ωc (H)/ω0 for IbSb 

 
THE CASE OF STRONG DEGENERATION 
 
In the case of strong degeneracy, the magnetic 

susceptibility, heat capacity and thermopower change 
nonmonotonously having the oscillatory behavior [3,8]. 

In the formula given below, it is taken into account that 
the Fermi level is much lower than b⋅ (Lx/2)2 at the 
considered concentrations 
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where z=ωc/ω0, η =εF// 0ωh  Here, h the position of the Fermi level is determined from 

the expression for the concentration and depends weakly on 
the magnetic field: 
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As the magnetic field increases, the quantum levels 

located lower than the Fermi level intersect the Fermi level 
leading to the abrupt decrease in absolute value of 
thermopower, magnetic susceptibility and heat capacity. 
However, between the above abrupt decreases the density of 
states, the magnetic susceptibility, heat capacity and 
magnetothermopower increase proportionally to ω(H)  and 
thus, the oscillatory behavior χ(H) , CV(H)  and α(H)  are 
observed. 

The dependences χ(H) , CV(H)  for InSb n=1012cm-2 (curve 
1) and GaAs n=5⋅1011cm-2 (curve 2) at T=4,2K are shown in 
fig.3 and 4, respectively. The concentrations are higher than 
in the nondegenerate case since our aim was to observe 
several oscillations. 

In the case of InSb, the jumps are nonuniform due to a 
considerable influence of the quantum level spin splitting. 

Thus, in the present paper the magnetic susceptibility, 
heat capacity and nondissipative transverse 
magnetothermopower in a quantum well have been 
investigated. The expressions for the density of states, 
magnetic susceptibility, entropy, heat capacity and 
thermopower of electron gas have been obtained. It is shown 
that in the case of degeneration, the dependence of χ(H) , 
CV(H), α(H)  on the magnetic field has a nonmonotonous 
oscillatory behavior. 

 

 

                    
Fig 3 . The dependence of magnetic susceptibility on the reduced 

value of the magnetic field z=ωc (H)/ω0 for IbSb (curve 1) and GaAs 
(curve 2) for the degenerate case. 

Fig.4 . The dependence of electron heat capacity on the reduced 
value of the magnetic field z=ωc (H)/ω0 for IbSb (curve 1) and GaAs 
(curve 2) for the degenerate case. 
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