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THE ZEEMAN SPLITTING IN KANE TYPE SEMICONDUCTOR WIRE

A.M. BABAYEV
Institute of Physics, Azerbaijan National Academy of Sciences,
370143 Baku, Azerbaijan, e-mail: semic@lan.ab.az

The electronic states of a Kane type semiconductor quantum wire with and without magnetic field are theoretically investigated and
compared with those of a quantum wire of the same size. The eigenstates and eigenvalues of the Kane’s Hamiltonian are obtained. Numerical
calculations are performed for a hard-wall confinement potential and electronic states are obtained as functions of the magnetic field. We
calculated the size dependence of the effective g-values in bare InSb, GaAs and CdSe nanocrystals. It has been seen that the effective g-value
of the electrons is decreased with the increasing of quantum wires radius.

1. Introduction

In recent years, there have been many studies about optic
properties of quantum nanostructures such as quantum dots,
quantum wires, quantum wells and others [1-3]. It is known
that the application of a magnetic field could provide
additional information about the properties of electrons in
solids and in nanostructures. Energy spectrum of carriers in
quantum dots and quantum wires, were considered
theoretically in [4-8]. In [9] in the absence of magnetic field
quantum wire energy spectra and wave functions were
obtained for two band Kane model in the case of zero spin
orbital interaction and zero magnetic field. The electron
energy states were investigated in the uniform magnetic field
directed along the quantum wire [4]. In this study the free
electron model was used. The energy spectrum was
determined as a function of a quantum number m for the
finite and infinite potential cases from the boundary
conditions. The energy spectrum in the dependent of
magnetic field is found to have a minimum for the negative
values of quantum number m.

Magneto-optical ~properties of quantum dots in
semiconductors have been considered for the model of hard-
wall confinement [6] when the real band structure of InSb-
type materials (narrow energy gap and strong spin-orbital
interaction) was taken into accaunt. The results of [6] are in a
good agreement with the magneto-optical experiments in
InSb quantum dots [10]. The effect of quantum confinement
and the nanocrystal surface on the g-factors are studied in [8]

for the ground and excited electron states in bare CdSe and
ZnO nanocrystals. The calculation was made by using 8x8

and 14x14 band Kane models second-order & . p perturbation

theory. The spin-orbital interaction and the contribution of
the electrons to the g factor were presented in details in
[11,12]. For the calculation of the electron g-values in [11]
the eight-band Kane's model was used where the
nonparabolicity of the electron and light-hole bands and the
complex structure of the valence bands had been taken into
account simultaneously. This model describes the energy
band structure around the I" point of the Brillouin zone very
well. The electron g-factor values for quantum wires and
quantum dots using the parameters of GaAs/Al, Ga;x As
hetero-system were calculated by perturbation theory[11]. It
was obtained that the g-factor is anisotropic (g, g,) for
quantum well and isotropic in cylindrical wire [12].

In this work, using three-band Kane's model including the
conduction band, light and spin-orbital hole bands, the
electron spectrum with and without magnetic field and
electron effective g-factor of quantum wire are calculated. In
opposite to [11,lavailable 2] we take the potential of the
quantum wire to be infinitive and consequently the wave
functions to be zero at the boundary.

In the eight-band Kane's Hamiltonian the valence and
conduction bands interaction is taken into account via the
unique matrix element P (so called Kane's parameter). The
system of Kane equations including the nondispersional
heavy hole bands have a from [12, 13]:
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Here P is the Kane parameter, £, - is the band gap energy, p? ) ]
A - is the value of spin-orbital splitting and k, =k, tik , (-E—/ + JA)C,, =0 (9)
B ' ’ 3 E+E, E+E +A" 777"
k=-iV.

where A; three dimensional Laplacian.

2. Zero magnetic field In cylindrical coordinates the eigenfunction is

Substituting expressions (3)-(8) into formulas (1) and (2) C,,=4,,exp(im$ +ik.z )R, ,(p) (10)
we obtain:
It needs | where 4;,is a normalization factor and the radial function
R(p)satisfies
2 2 2
r2 1 d2+ii—m—2—kj}+E R,(p)=0 (11)
3 E+E, E+E,+A"|dp” pdp p ‘

I
The Kane' i i i 2
e Kane's pgrame;ter P is connected with effective mass E(E+Eg)(E+ Eg +A)(3Eg +2A) _ #? z., hzkzz
m, and can be written in a usual way [15]. —_—

2
E(E,+A)(3E+3E,+2A) 2m, R° 2m,
, 31 E(E,+A) | a8
P = (12)  where z,, is the p-th root of the m-th Bessel function J(z).
2m, 3E ¢ T 2A Equation (18) determines the energies of electrons, light
holes, and the spin-orbit split-off band of holes. This equation
After substitution of the values of P° from (12), the can be useful for analyzing the influence of nonparabolicity

equation (11) can be rewritten in the form: on the energy spectrum of electrons in a quantum wire.
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Equation (13) is Bessel's differential equation [16], with r T
the solution bounded at p=0 being

R ,(p)=CJ,(%p) (15) oy

Fig.1. The dependence of the lowest quantum size levels in
InSb quantum wire as function of the quantum wire
radius. (1) for parabolic dispersion law. (2) for Kane’s
dispersion law.

where

2 E(E+E )(E+E +A)(3E.+2A) #K’
x’ = m”( ( / e tA)GE, )— £ In fig.1, the dependencies E(R) for two cases are

n Eg(Eg +A)(SE+3 E,+24) 2m, presented: a) electrons with parabolic dispersion law, b)

(16)  electrons with Kane's dispersion law for InSb quantum wire.

According to this figure, with increase of R, the electron

For an infinite wall at radius R, the boundary condition is energy levels in both cases are close to each other. At rather

small sizes of R, the variance electron dispersion laws

become more and more important and therefore, the curves
for E(R) keep away from each other.

R, ,(R) =0, so the eigenvalue equation is

Ju( % R)=0 (17)
3. Applied magnetic field, infinite step

Equations (16) and (17) together show that the radial ) S .
eigenvalue spectrum is The atomic Zeeman splitting is incorporated by adding

1
the terms * Egou gH the diagonal of Kane's Hamiltonian,
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up is the Bohr magneton, g, is the Lande effective factor.

For a uniform magnetic field, H directed along the z axis,
the vector potential may be choosen in the form

E:i[ﬁxF]:(—i,H" ,0]
2 272

and k, have the forms

(19

( 2 1
KA E +E, "E+ E, +A
where L, is a z component of in angular momentum operator

2 2 2 _1
L p"=x"+y and E,=E+—gyugH .
2

If one seeks the solution of equation (22) in cylindrical
coordinates in the form

|m]
C,=4, exp(im(p + ikzz)exp[— %)c‘, quu(&) (23)

W=V + A, L += 73

k, >k, + iéan (20)
where
r.=xtiy, A, :ﬁ 21)
- fic

Substituting expressions (3)-(8) into formulas (1) and (2),
and using the (20), (21) relations we obtain:

1
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Equation (24) is the canonical form of Kummer's equation
2

P
21
is the dimensionless variable. The solution of (24) that is
bounded at p =0 is

for the confluent hypergeometric function. In (23) § =

he obtains for the radial function @) the following (D(ci)z M (OL Iy b,&) (25)
equation | where
1 | m | >, E, (E,+E )(E +E,+A)(3E,+2A) A
a,,= EL L P kz l; — + (26)
2 2 2 2 ho, E,(E,+A)(3E,+3E,+2A) ~ 2(3E,+3E,+2A)
] hic We can find the energy spectrum E(R,m,l, .k, ) from
0, = is th lotron fi =.]— i
¢ m,c 18 e cyCIotron Hequeney, fy eH ' equation (26). It is necessary for this to find o, and a, from
the magnetic length and equation (28) for a given R, azimuthal quantum number m
and /y, and then to substitute them into equation (26). For an
_ |m| ny @7 infinite medium, R — o, equation (28) is replaced by the

are the parameters of the Kummer function in standard
notation. The boundary conditions which correspond to the

infinite potential at p = Rare C;, =0 . These lead to the

2

requirement that M be bounded as —- —> oo. This simply
Iy

means that o, ; is a negative integer [16],

eigenvalue equations o,,=-1,1=012,.. (29)
R’
M(az,z’b’_g) =0 (28) leading to the result
il |
E(E,+E )(E,+E_+A)(3E, +2A
(B, + B )(E, + By + A)(3E, ):(n—i-i)hmci A hmc+ikjl§hmc (30)
E(E,+A)(3E, +3E,+2A) 2 2(3E,+3E,+2A) 2
with The expression (30) is the same as the expression of the
n=Il+m for m>0 (31) energy spectrums of carriers of bulk Kane type
n=1 form<0. (32) semiconductors in the magnetic field [15].
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The magnetic field dependencies of electrons energy
spectrum for the lowest sequences of m at the subbands

bottom (k,=0) for InSb quantum wire with R=3004, in which
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the non-parabolicity was taken into account, are shown in
Fig.2 (for gy=0).
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Fig.2. Lowest part of the energy spectrum of electrons as a
function of the magnetic field in cylindrical quantum
wires for the InSb.
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Fig.3. The electron g factor calculated as a function of the
radius in cylindrical quantum wires for GaAs.
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Fig.4. The electron g factor calculated as a function of the radius
in cylindrical quantum wires for InSb.
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Fig.5. The electron g factor calculated as a function of the radius
in cylindrical quantum wires for CdSe.

The light hole and spin-orbital splitting subbands can be
obtained by the same way for two other roots of equation
(26). As it is seen from fig.1 the magnetic field dependence
of energy has a minimum only for subbands with the negative
m. These results are in good agreement with those given in
[4].
Note that for the quantum wire with the finite length d

k.=C10=123,. (33)
d

.. T
and the minimal value for k, must be taken as — .

The expression for the g-factor obtained in the second
order of £. p perturbation theory has the form [15]

m A
E)=2/1+(1-—"
g(E) ( n%)3E+3Eg+2A

But in magneto-optical experiments, transitions from the
bottom of the subbands take place and the effective g-factor
can be determined from the Zeeman splitting of subbands

(34

(35)
wpH

g(E)=

Here E1 and E| are the electron energy for spin +z and -z
directions, respectively. Note that the g-factor determined by
the equations (34) and (35) are the same if one considers the
bottom of the lowest subband.

Figures 3, 4 and 5 show the electron g-factor dependence
on R calculated by the equation (35) for GaAs, InSb and
CdSe quantum wires for the fixed magnetic field value
H=0.5T, respectively. As seen from fig.3 in GaAs quantum
wire, the electron g factor value changes its sign with a
radius. The following band parameters have been used for
GaAs E, =1.52 eV, A=0.34 eV, 2p.’/m;=28.9 eV (here
Po=mogPlh, my is the free-electron mass) [11]. The
contribution of remote bands is taken into account by adding
the constant Ag=-0.12 to the Kane’s model values of g [12].
This result is also found in [11] for GaAs/Aly;s Gages as
structures in the finite barrier case. It is obvious that the same
will occur in the case of fixed R with increasing of magnetic
field. The figure which shows the g-factor dependence on R
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for CdSe (figure 5) is in good agreement with the reference  electron effective g-factor for quantum wire is calculated. It
[8]. was shown that the effective g-factor of electrons decreases
It should be noted that the obtained results can be applied  with increasing of quantum wires radius and changes its sign
to quantum wires of InAs and zero-gap semiconductor HgTe  for GaAs quantum wires.

and narrow-gap semiconductor Cd;.x Hg,Te also. The size dependence of the spectra of electrons in A’B’
and A’B’-type semiconductor cylindrical quantum wires was
4. Conclusion studied. It was taken into account the nonparabolicity of the

In this work using the eight band Kane's model the spectrum of light holes, electrons and spin-orbit splitting
electron spectrum with and without magnetic field and valence band.
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KEYN TIPLI YARIMKECIRICI KVANT MOFTILLORDO ZEYMAN PARCALANMASI

Keyn tipli yarimkegrici kvant moftillorde maqnit sahasinde vo sahonin sifir qiymetinds elektron hallari tapilmis vo eyni olgiili
yarimkegcrici kvant maftillin elektron hallari ilo miiqayise edilmisdir. Keyn hamiltoniani ii¢iin mexsusi giymotlor vo dalga funksiyalari
tapilmisdir. ©dedi hesablamalarla sonsuz mohdudlagdirici potensial {igiin elektronun enerjisinin maqnit sahssinden asihihg
tapilmigdir. InSb, GaAs ve CdSe nanokristallar1 iglin elektronlarin effektiv g-faktorunun sistemin o6lgiisinden asililig
hesablanmigdir. Gostorilmisdir ki, 6l¢ii kigildikco g-faktorun qiymeti artir.

A. M. ba6aeB

3EEMAHOBCKOE PACHIEINIEHUE B KEHHOBCKHUX MOJYIPOBOJJHUKOBBIX KBAHTOBBIX
IIPOBOJIOKAX

HaiineHs! 37eKTpOHHBIE COCTOSIHHS B KEHHOBCKUX HOJIyIIPOBOJHHMKOBBIX KBAHTOBBIX IIPOBOJOKAX B MAarHUTHOM IIOJ€ U B OTCYTCTBUH
nons. IIpoBeneHs! cpaBHEHUS C OOBIYHON ITOIYHPOBOJHUKOBON KBAHTOBOI IIPOBOJIOKOH TOro ke pasmepa. IlomydeHs! coOCTBEHHBIE
3HAYCHUs] U COOCTBEHHBIE (YHKIMN KSHHOBCKOTO raMWJIbTOHMAHA. [IpoBeeHbl YUCIeHHbIE PacueThl JJIsi OECKOHEYHOTO OrpaHUYHBAIOLIETO
MOTEHIMAJIa W HaMJEHBl JJEKTPOHHBIE COCTOSHMS B 3aBUCUMOCTH OT MAarHUTHOrO NOJs. PaccunTaHbl BENWMYUHBI DJIEKTPOHHOIO
a¢dexTuBHOTO g-hakTopa B 3aBUCHMOCTH OT pa3Mepa B HAHOCTPYKTypax nonynpoBoguuko InSb, GaAs, u CdSe. IToka3zaHo, uto 3HaueHne
3¢ dexTHBHOTO g-(haKkTopa pacTeT ¢ yMEHbIIEHHEM pa3Mepa KBAHTOBOIT POBOJIOKH.
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