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CLASSICAL FACTORIZATION METHOD FOR THE NON-STATIONARY SYSTEM
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The classical factorization method is constructed for the non-stationary system with the use of quantum integrals of motion.

The classical factorization method (CFM) developed by
Schrodinger [1] and extended by Infeld and his collaborators
[2] allows the eigenfunctions (EF) and eigenvalues (EV) to
be constructed for the stationary problems.

Within the framework of CFM the Hamiltonian for the
harmonic oscillator is known to be represented as
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the Bose rising and lowering operators, respectively. Then
the EV; and the EF; of the Hamiltonian are defined by the
algebraic way provided the energy EV have a lower limit.

To solve the non-stationary problem means to determine
the wavefunctlon . satisfying the wave equation
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ih—w = Hy , where H is the Hamiltonian of the problem
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under consideration. However, the wave function of the non-

stationary problem is not EF of a and, there fore, it is
impossible for the CFM to be extended to the non-stationary
case directly.

The wave function of the non-stationary system might be
determined if this wave function obeys not only the wave
equation but simultaneously is the EF of a certain operator
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where A~ are the Bose rising and lowering operators for the

given non-stationary system and the EV of K have the
lower limit. Such a situation is realized provided
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i.e. only on condition that K is the quantum integral of
motion.

The aim of the present work is to show, with a harmonic
oscillator with a time-dependent frequency being used as an
example, that the CFM may be developed for the non-
stationary system provided the method of the quantum
motion integrals is used.

There is a further point to be made, in the case of the
non-stationary problem one can solve the EV problem for the

operator K instead of the corresponding wave equation. In
the stationary case this operator transform to the energy
operator.

Let us consider a non-stationary harmonic oscillator
described by the Hamiltonian
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where x is a usual canonical coordinate, p is its conjugate
momentum, and m is a mass.

It is known that lowering and rising operators for such
system [3] are:
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where the function g(z) is a definite solution of the classical
harmonic oscillator equation

(4)

E+o’(t)e=0. (5)
The following commutation relationship holds
L ar|=1 ©)

It is easy to check that
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i.e. the operators (4) are invariants.
Formulae (5) and (6) give the following equality,
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which is valid for any moment of the ¢ .

Let us introduce an operator K according to (1) where
A" are given by the expressions (4). If H has the form 3)
it is easy in compliance with (2) to be convinced that K is

the motion integral. This means that K commutes with the
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the same set of EF,. Consequently, the wave function of non-
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stationary harmonic oscillator can if be found if the EV

problem for operator K is solved:
Ky =ky ©)
Construct the following motion integrals

X, =4 +47)/42 (10)

and

B =(a—4")/i2 (11)

They are referred to as the operator of the initial
coordinate and the operator of initial impulse, respectively

[4]. Let us express K from (1) in terms of these operators:

R=(%2+P2)2 (12)
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Xjand F, are the Hermitian operators. Then these

operators have the real EV that places the lower limit of EV
of the expression (12): k > () This enables to apply CFM to
solving the problem (9).

Denote the quantities belonged to the ground state, i. e. to

the lowest EV of the operator K by subscript "0".Then

Ky, =k, (13)

Let us multiply the equation (13) on the left-hand side by
and make use of the commutation relationship (6) taking into
account (1). Finally, instead of equation (13) we

obtain 1{';1'\4/0 = (k, - Iy, . Since ky is the lowest EV of the

operator K it follows that

Ay =0 (14)
whence

W, = Coexp(iméxz /2h8) (15)
and

is calculated from the normalization for ¥, . By means of

(14) we get from the expression (13) k, =1/ 2.
Let us multiply the equality (13) on the left-hand side by

A" and make use of the expressions (6) and (1). We obtain
IgAJrl//o = (ko + ])A+l//0, whence Y, = C1A+y/0 ,

k, =k, + 1. Using the mathematical induction method one
- 1

can prove that ¥, = C1A+t/1n_, ,k, = n+—. The value of
2

C, is given by the normalization conduction. On the whole

we get the wave function of the non-stationary harmonic
oscillator in the form

v, =)y

that exactly coincides with the well known result for the
system under consideration [4].

The author thanks Prof. Gashimzade F.M. for helpful
discussions.
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QEYRI STASIONAR SISTEMLOR UGUN KLASSIK FAKTORIZASIYA METODU

Harakatin kvant integrallarinin kdmayi ile geyri stasionar sistemlar li¢lin klassik faktorizasiya metodu islenib.
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KJIACCUYECKHUI METO]T ®AKTOPU3AIIAHU J1JI1 HECTALIMOHAPHBIX CUCTEM

C TNIOMOIIbIO KBAHTOBBIX UHTETPAJIOB ABUXKCHUSA PA3BUT KJIACCUYECKUN METO.T (l)aKTOpI/BaLII/II/I JUIL HECTALlUOHAPHBIX CHUCTEM.
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