
ФИЗИКА                                                              2002                                              ЖИЛД VIII  № 4 
 
 

REALIZATION OF THE TOMOGRAPHIC PRINCIPLE IN QUANTUM STATE  
OF DAMPED OSCILLATOR 

 
E.A. AKHUNDOVA 

Institute of Physics of the Azerbaijan National Academy of Sciences 
H. Javid av. 33, Baku, 370143 

 
The general principle for the tomographic approach to quantum state reconstruction, which until new has been based on a simple 

rotation transformation in the phase space is considered. The realization of the principle in specific example is presented. 
 

1. Introduction 
 

In 1932 Wigner [1] introduced a real function W(q,p) 
which is related by Fourier transform with complex density 
matrix ρ(x,x’). The Wigner function has the specific properties 
which are similar to properties of a probability distribution 
function of classical statistical mechanics. The motivation to 
introduce such function was to make the description of 
quantum state closer to intuitively more familiar description 
of classical state by means of probability distribution on the 
phase space.  Moyal [2] has formulated evolution equation of 
quantum state in terms of Wigner function. The Moyal 
formulation of quantum mechanics showed very clearly what 
is similarities and differences of the classical and quantum 
fluctuations. 

Nevertheless the Wigner function can not be considered 
as joint probability distribution on phase space. The obvious 
reason for this is the fact that the Wigner function can take 
negative values for quantum states [3-5]. The Wigner 
function is used to study the evolution of quantum systems 
[5-8] since it provides a convenient representation similar to 
classical picture of the evolution.       

Recently, in [9-11] the probability representation of 
quantum mechanics was introduced and the new evolution 
equation was derived, which was a generalization of the 
result obtained in [12], where the role of the Wigner function 
was played by the particles position in an ensemble of rotated 
and scaled reference frames in the system’s classical phase 
space (the classical representation of quantum mechanics 
uses the symplectic tomography procedure suggested for 
measuring quantum states [13,14]. Tomography is well 
known in the field of medicine where it is extensively used 
for image reconstruction in diagnostic systems. It is based on 
the possibility of recording transmission profiles of the 
radiation which has penetrated a living body from various 
directions. In quantum optics, one has the opportunity of 
measuring all possible, so that tomography can be easily 
implemented. In fact Vogel and Risken  [ ] pointed out that 
the marginal distribution is just the Rodon transform (or 
“tomography”) of the Wigner function.  

By inverting the Radon transform, one can obtain the 
Wigner function and then recover the state, this is the basis of 
the method proposed by Smithey et al [15]. 

The aim of this paper is to consider the tomographic 
principle and investigate in a frame of this principle the 
quantum system described by the quadratic non-stationary 
Hamiltonian. 

 

2. Symplectic tomography 
 

In the usual optic homodyne tomography the observed 
quantities are the quadratures ϕϕϕ sinp̂cosq̂x̂ +=  obtained 

as mixtures of position q̂  and momentum p̂  by means of a 
rotation g in phase space 
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The quadrature histograms w(x,ϕ) also called marginal 

distributions are projections (Rodon transformation) of 
Wigner function [1] 

 
    ∫ += )dppcosqsin ,psin-W(qcos)w(x, ϕϕϕϕϕ  

                                                                                           (2.2) 
 
On the other hand the resulting marginal distribution 

w(x,ϕ) is [13] 
 

>>=<=< q(g)GˆG(g)qxˆx)w(x, -1ρϕρϕ ϕ  

 
where xϕ> are eigenkets of quadrature operators and G(g) is 
the unitary group representation for the transformation g. In 
this case  
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As was shown in [12] for the generic linear combination 

of the position q and momentum p, which a measurable 
observable in the phase space 

 
                     δνµ ++= p̂q̂x̂                                 (2.5) 
 

where µ, ν, δ are real parameters, the marginal distribution 
ω(x,µ,ν) is related to the state of the quantum system 
expressed in terms of its Wigner function W(q,p) as follows: 

 

∫= 2)(2
dkdqdpp)p)W(q,-q-exp[-ik(x),x,(
π

νµνµω  

                                                                                           (2.6) 
 

where x=X-δ. By means of the Fourier transform of the 
function ω, one can then obtain the relation 
 
                     zp)- zq,- (z,~z)(2p)W(q, 22 ωπ=          (2.7) 
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where –zq, -zp and z are the conjugate variables to µ, ν  and x 
respectively and the Fourier transform ω~  has the property 

 

         p)- q,- 1,(
z
1zp)- zq,- z, 2 ωω =                 (2.8) 

 
It is worth remarking that in this case the connection 

between the Wigner function and the marginal distribution is 
simply guaranteed by means of the Fourier transform instead 
of the Rodon transform. 

The procedure developed is called “symplectic 
tomography” [13], since in this case the marginal distribution 
is obtained by using a symplectic transformation g belonging 
to the symplectic group ISp(2,R) 

 

















=








→








−10

0
cossin-

       sincos
g ,

p
q

g
p
q

λ

λ

ϕϕ
ϕϕ

     (2.9) 

 
For this transformation, one has  
 

      0 ,sin     ,cos -1 === δϕλνϕλµ                (2.10) 
 
This, for the realization of the scheme, the element g is 

the product of squeezing and rotation operators. This means 
that for our scheme the representation operator is 
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3. Marginal distribution for quantum dumped oscillator. 
 
Let us consider a quantum system described by Hermitian 

non-stationary Hamiltonian [16] 
 

( ) x̂f(t)ex̂(t)eep̂
2
1Ĥ (t)22(t)2e

0
)t(22 ΓΓΓ ω −+=   (3.1) 

 
The wave functions for the Fock states of this system ψn 

have the form 
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where the Hn(x) are Hermite polynomials and ε(t) is a 
complex function satisfying the equation 

 
               0t)((t)2 2

0 =++ εωεΓε &&&&                         (3.3) 
 

and the additional relation 
 

                      i2*-*(e (t)2 =εεεεΓ &                            (3.4) 
 

 
and  

∫−= ττεδ Γ f(t)d)e(i(t) (t)2  

 
The corresponding Wigner function is as follows: 
 

                        Ln(4z(t)e2(-1)q)(p,W -2z(t)n
n =  (3.5)
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The marginal distribution (2.6) as it was shown above is 

expressed in terms of its Wigner function. Then the marginal 
distribution ) , x,(т νµω  for the Fock states of our system is 
as follows
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Substituting (3.5) in (3.6) and taking for simplicity f(t)=0 we obtained the exact expression for marginal distribution in the 

following form:  
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where 

                    [ ] µεεεενΓ
εε

++⋅= *)*((t)exp
*

1a &   , 

                    *b εε
ν=  . 

 

In the following paper we will obtain the smoothed 
Wigner function of our system and its smoothed marginal 
distribution and compare both expressions. 

I am very grateful to professor V.I. Man’ko for numerous 
discussions and suggestions.
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Е.А. Ахундова 
 

СЮНМЯДЯ ОЛАН ОССИЛЙАТОРУН КВАНТ ЩАЛЛАРЫ ЦЧЦН ТОМОГРАФИК 
 ПРИНСИПЛЯРИН ЩЯЙАТА КЕЧИРИЛМЯСИ 

 
Фырланманын фаза фязасында садя чевирижисийя ясасланан квант щалларынын тясвири цчцн томографик йанашма системинин цмуми 

принсипляри нязярдян кечирилиб.  Бу принсипин щяйата кечирилмяси хцсуси мисалда тягдим олунмушдур.  
 

Э.А. Ахундова 
 

РЕАЛИЗАЦИЯ ТОМОГРАФИЧЕСКОГО ПРИНЦИПА ДЛЯ КВАНТОВЫХ СОСТОЯНИЙ 
ЗАТУХАЮЩЕГО ОСЦИЛЛЯТОРА 

 
Рассмотрен общий принцип томографического подхода для описания квантовых состояний системы, который основан на 

простом преобразовании вращения в фазовом пространстве. Представлена реализация этого принципа на особом примере. 
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