THE STRUCTURAL TRANSFORMATIONS IN Cu_{1.50}Ag_{0.5}Te

Y.G. ASADOV, R.B. BAYKULOV

Institute of Physics, Azerbaijan National Academy of Sciences, Baku. Az - 1143, H. Javid ave. 33

The structural phase transition in Cu_{1.50}Ag_{0.5}Te were investigated by the high-temperature roentgenodiffractometric method, and it was shown, that at the room temperature Cu_{1.50}Ag_{0.5}Te is two-phase and is composed of the rhombic phase with the lattice parameters a=7.319Å, b=22.236Å, c=36.458Å and the rhombic phase with the lattice parameters a=3.12Å, b=4.04Å, c=6.87Å. The both rhombic phases transfer into the two primitive cubic phases with the parameters $a_1=7.0091$ Å in $a_2=6.8787$ Å, respectively, by the temperature increase at 469K.

The Cu₂Te compound on the state diagram of the Cu-Te system corresponds to the compound 33,3 at % Te and melts at 1393 K[1]. In [2] it is shown, that Cu₂Te is crystallized in the hexagonal structure with lattice parameters: a_o =4.237Å, c_o =7.274Å, a space group P6mmm, the elementary cell contains Z=2, the density ρ_x =7.274 g/cm³.

According to [3] for Cu₂Te the rhombic structure with the

lattice parameters $a=7.319 \text{\AA} \approx \sqrt{3} a_o$, $b=22.236 \text{\AA} \approx 3c_o$, $c=36.458 \text{\AA} \approx 5c_o$, which is the superstructural hexagonal phase, is determined at the room temperature. In [3-9] it is shown by various authors and naturally by various methods, that in Cu₂Te five structural transformations at 448, 548, 593, 638 and 848K occur in the temperature range 290-1220K.

In [10] it is shown by the high-temperature roentgenodiffractogramic method, that:

- a) The second hexagonal phase with the lattice parameters a=8.4191Å, c=21.8733Å is yielded at 448 K from the Cu₂Te crystal, composed of the rhombic and hexagonal phase with the lattice parameters: a=7.319Å, b=22.236Å, c=36.458Å and a=4.1418Å, c=7.1833Å. The parameter <u>c</u> of the rhombic phase is sharply cut $\Delta c=0.72$ Å with the phase formation, what gives reasons to make conclusion, that the second hexagonal phase is formed at the expense of the rhombic phase.
- b) At 540 K the parameters \underline{a} and \underline{b} of the rhombic phase reduce by the jump, but the parameters \underline{a} and \underline{c} of the first hexagonal phase increase by the jump. The reason is the displacement of the cations and the cation vacancies.
- c) At 590 K the rhombic and first hexagonal phases transfer into the second hexagonal phase and crystals Cu_2Te become one-phase at the temperature range 590-638 K.
- d) At 638 K the diffraction reflections, belonged to the rhombic phase, are restored with the appearance of the reflection from the plane (111) of the high-temperature fcc phase.
- e) At 848 K the rhombic and second hexagonal phases transfer into the fcc phase with the lattice parameters a=6.1140Å.

In [11] it is shown, that the crystals $Cu_{1.50}Zn_{0.50}Te$ at the room temperature, as Cu_2Te , are two-phase and composed of the hexagonal phase with the lattice parameters a=4.2478Å, c=7.2334Å and the rhombic phase with the lattice parameters of the corresponded lattice parameters Cu_2Te .

At 811 ± 2 K the rhombic phase transfers into the hexagonal phase. In this process the parameters of the hexagonal phase do not suffer the jump. It testifies the fact, that at the transformation of the rhombic phase into the hexagonal, the latter is to be the primer. The hexagonal phase

itself at 970±2 K transfers into the high-temperature fcc phase of the lattice parameter a=6.1187Å.

It follows from the above-presented, that in crystals Cu_2Te the partial substitution of Cu atoms by the Zn atoms, having the same charge and close ion radii, cut the number of the phase transformations from five in Cu_2Te up to two in $Cu_{1.50}Zn_{0.50}Te$.

The results of the high-temperature roentgenodiffractogram researches of the influence of the partial substitution of the cooper atoms by the silver atoms on the structure, mechanism and the temperature of the structural transformations in the crystal Cu_2Te are represented in the present paper. With this purpose, the method of the direct synthesis, i.e. the chemical interaction of the initial components, is used for the receipt of the homogeneous samples of the $Cu_{1.50}Ag_{0.5}Te$ compound. The initial components, taking part in the compound, have the following purities: cooper is electrolytic, silver and tellurium are of the special pure mark (SP). The synthesis conditions and the crystals growth by the Bridgemann's method are represented in [10].

The temperature roentgenographic researches was carried out on the diffractometer DRON-3M with the temperature attachment URVT-2000.

Experiments were carried out in the vacuum (10^{-2} Pa). The condition of the survey permission was made ~1°. The diffractograms are recorded persistently, the diffraction angles are determined by the method of the intensities peaks measurement. In experiments the error of the reflection angle determination did not exceed the value $\Delta\theta$ =±0.02°.

From the crystal ingot Cu_{1.50}Ag_{0.5}Te the thin plane of the size $2\times4\times4$ mm was cut off and at the room temperature 18 diffraction reflections (table 1) are fixed from the indicated sample in the angle interval $20^{\circ} \le 20^{\circ} \le 80^{\circ}$.

For the precious indexing of the diffraction data from $Cu_{1,50}Ag_{0,5}Te$ they were compared with the calculated values of the interplane distances d_i , and corresponding indices $h_i k_i l_i$ of the reflection planes, calculated on the base of the parameters of the elementary cell Cu2Te, CuAgTe and Ag₂Te. As it is seen from the table 1, the experimental values are satisfactorily coincided with the calculated parameters d_i of the lattice parameters of the rhombic phase Cu₂Te. From experimental d_i , as it is seen from the table 1, some d, i.e d=2.4715 (110); 2.0060 (112); 1.7177 (004); 1.5608 (200) and 1.4145 (114) are indexed on the base of the parameters of the rhombic phase CuAgTe. It follows hence, that the crystals $Cu_{1,50}Ag_{0,5}Te$ at the room temperature are two-phase, i.e crystallized in the rhombic structure Cu₂Te and CuAgTe, besides the relative number (quantity) of Cu₂Te is more than CuAgTe.

Y.G. ASADOV, R.B. BAYKULOV

Table 1

The diffractogram's calculation of $Cu_{1.50}Ag_{0.50}$ Te. $CuK_{\alpha}(\lambda_{\alpha}=1.5418 \text{ Å})$, filter – N_i, Regime: 38 KV, 22 mA.

NN	θ	I/I ₀	d _{exp.} (Å)	Cu ₂ Te		CuAgTe	Parameters of the elementary cell, \mathring{A}	$T_{exp} \atop K$	
				$d_{cal.}(Å)$	hkl	$d_{cal}(Å)$	hkl		
1	2	3	4	5	6	7	8	9	10
1	15°41′	17	2.8534	2.8534	208				
2	16°30′	33	2.7144	2.7155	209				
3	16°52′	100	2.6574	2.6586	084			Rhombic	
4	17°30′	95	2.5636	2.5623	256			a=7.3193	
5	18°11′	15	2.4715	2.4707	090	2.4716	110	b=22.2435	
6	18°39′	42	2.4107	2.4181	302			c=36.3636	
7	20°11´	50	2.2345	2.2340	340				
8	21°27´	40	2.1081	2.1093	099				
9	21°45´	30	2.0807	2.0807	319				293
10	22°36′	42	2.0060	2.0059	348	2.0064	112	Rhombic	_//0
11	22°48′	19	1.9893	1.9887	364			<i>a</i> =3.1216	
12	23°29′	18	1.9352	1.9349	370			<i>b</i> =4.0423	
13	24°14′	52	1.8788	1.8775	2103			<i>c</i> =6.8708	
14	25°02	11	1.8224	1.8224	411	1 5155	004		
15	26°40'	11	1.7177	1.7185	393	1.7177	004		
16	28°44	9	1.6040	1.6032	3105	1.5000	200		
1/	29°36	4	1.5608	1.5614	459	1.5608	200		
18	33°02	12	1.4145	1.4145	208	1.4111	114		
1	15'39	10	2.8584	2.8300	208				
2	10 29	33 100	2.7175	2.7170	209			Dhombio	
3	10 31	07	2.0001	2.0022	256			a=7.3367	
5	1/20	20	2.3088	2.3001	230	2 4746	110	u = 7.3307 h = 22.2732	
6	18°33′	50	2.4748	2.4748	302	2.4740	110	c=36.4101	
7	20%07	48	2.4227	2.4237	340			2-30.4101	
8	20°07 21°25′	34	2.1109	2.1110	099				
9	21°43′	30	2.0835	2.0838	319				
10	22°33′	36	2.0102	2.0089	348	2,0093	112	Rhombic	373
11	22°46′	35	1.9920	1.9924	364	2.0090		a=3.1280	
12	23°26′	23	1.9389	1.9390	370			<i>b</i> =4.0522	
13	24°12′	45	1.8807	1.8804	2103			c=6.8860	
14	24°59′	15	1.8255	1.8259	411				
15	26°36′	13	1.7215	1.7218	393	1.7215	004		
16	28°42′	10	1.6054	1.6060	3105				
17	29°32´	10	1.5640	1.5642	459	1.5640	200		
18	33°00′	10	1.4155	1.4178	541	1.4132	114		
1	15°38′	5	2.8605	2.8595	208				
2	16°28´	30	2.7202	2.7206	209				
3	16°49´	100	2.6647	2.6660	084			Rhombic	
4	17°27′	90	2.5714	2.5700	256			a=7.3477	
5	18°07′	15	2.4788	2.4788	090	2.4784	110	<i>b</i> =22.3092	
6	18°35′	50	2.4189	2.4275	302			c = 36.4280	
7	20°06	45	2.2429	2.2428	340				
8	21°24	32	2.1126	2.1141	099				100
9	21°42	30	2.0852	2.0865	319	2 01 21	110	D1 1.1	423
10	22°31′	35	2.0128	2.0117	348	2.0121	112	Khombic	
11	22°45	30	1.9935	1.9956	364			a=3.1312	
12	25°24	20	1.9413	1.9418	3/0			b=4.0622	
15	24-10	40	1.8830	1.8838	2103			<i>c</i> =0.8940	
14	24 37	14	1.02/0	1.0282	411	1 7025	400		
15	20-34	12	1.7255	1./24/	343	1.7255	400		
10	20 40 20º201	10	1.0070	1.008/	5105 A50	1 5656	200		
18	29 30 32°54'	10	1 4102	1.5005	541	1 4149	114		
10	54 54	10	1.71/2	1.777	571	1.717/	114		

After the diffraction reflection record at the room temperature, without changing the angle interval and the crystals orientation the furnace was switched on and the record was carried out every 50 K. Before every record the corresponding temperature was kept constant during 40 min. Under this conditions, the essential changes did not occur in

the reflection number and their intensities up to 423 K. Only at 423 K the four couple diffraction reflections (fig.1), whose calculations are represented in the table 2, are fixed in the previous angle interval. As it is seen from the table 2 and fig.1 the low-temperature two-phase crystal $Cu_{1.50}Ag_{0.5}Te$ at 469±1 K transfers into the two primitive cubic phases with

the lattice parameters: a_1 =7.009Å μa_2 =6.878Å, distinguished by the elementary cell parameters and the diffraction reflections intensities, where $I_{(220)}^1 > I_{(220)}^2$, $I_{(222)}^1 > I_{(222)}^2$, $I_{(320)}^1 < I_{(320)}^2$ and $I_{(400)}^1 < I_{(400)}^2$.

Fig.1. The crystal's diffractogram of $Cu_{1.50}Ag_{0.50}Te$ (the rhombic phase reflex is marked by the star)

Y.G. ASADOV, R.B. BAYKULOV

Table 2

The diffractogram's calculation of $Cu_{1.50}Ag_{0.50}Te$.

NN	θ	I/I ₀	$d_{exp.}(Å)$	$(P)_{I}$		$(P)_2$		Parameters of	T _{exp.}
				$d_{cal.}(Å)$	hkl	$d_{cal.}(Å)$	hkl	the elementary cell, A	K
1	18°07´	100	2.4788	2.4781	220	-	-		
2	18°29′	40	2.4319	-	-	2.4320	220	$(P)_{I}$	
3	22°24´	80	2.0228	2.0234	222	-	-	a=7.0091	
4	22°51′	30	1.9853	-	-	1.9857	222		172
5	23°22´	40	1.9438	1.9436	320	-	-		475
6	23°50′	20	1.9082	-	-	1.9078	320	$(P)_{2}$	
7	26°06′	10	1.7524	1.7523	400	-	-	<i>a</i> =6.8787	
8	26°38′	5	1.7196	-	-	1.7197	400		
1	18°06´	100	2.4812	2.4801	220	-	-		
2	18°27′	38	2.4365	-	-	2.4362	220	$(P)_{I}$	
3	22°23´	83	2.0244	2.0249	222	-	-	<i>a</i> ₁ =7.0146	
4	22°48´	38	1.9824	-	-	1.9891	220		572
5	23°21′	22	1.9452	1.9455	320	-	-		575
6	23°48´	45	1.9105	-	-	1.911	320	$(P)_{2}$	
7	26°05´	10	1.7536	1.7537	400	-	-	<i>a</i> ₂ =6.8906	
8	26°35′	10	1.7227	-	-	1.7226	400		

Fig.2. The temperature dependencies of the lattice parameters of both rhombic and cubic phases.

THE STRUCTURAL TRANSFORMATIONS IN Cu_{1.50}Ag_{0.5}Te

Fig.3. The scheme of the structural transformations in Cu_2Te , $Cu_{1.50}Zn_{0.50}Te$ and $Cu_{1.50}Ag_{0.50}Te$.

Y.G. ASADOV, R.B. BAYKULOV

At the further heating the both primitive cubic phases kept their individuality, but at the reverse cooling below 469 K they transfer into the two ordered phases, one of which is identical by the lattice parameters to the low-temperature phase Cu₂Te, and another to CuAgTe. As it was noticed, the low-temperature rhombic phase Cu₂Te after the four intermediate phase transformations at 848 K transfers into the high-temperature fcc phase with the lattice parameters a=6.114Å. It is known about the second phase, i.e CuAgTe, that at the room temperature it is crystallized in the structural type of the rhombic CuTe with the lattice parameters a=3.12Å, b=4.05Å, c=6.875Å, $\rho=8.20g/cm^3$. However, the space groups with *Pmmm* on *Pmm2* (the suppression is absent) is changed with regard to the ordered substitution of the half of Cu atoms by Ag atoms.

In spite of the fact, that the compound $Cu_{1.50}Ag_{0.5}Te$ at the room temperature is two-phase and crystallized in the structural type Cu_2Te and CuAgTe, neither the transformation temperature nor the high-temperature modifications structures do not correspond.

The schemes for the comparison of the structural transformations in $Cu_{1.50}Ag_{0.5}Te$, Cu_2Te and $Cu_{1.50}Zn_{0.5}Te$ are represented on fig.2. These differences represented on the scheme are mainly connected with the spreading of two types of cations between the layers of tellurium atoms in the tetrahedral and octahedral vacuums.

The temperature dependencies of the lattice parameters $Cu_{1.50}Ag_{0.5}Te$ are represented on fig.3. As it is seen from fig.3, the parameters a(T), b(T), c(T), of both rhombic and a(T) of both cubic phases increase in a linear fashion. The coefficient of the line expansion, calculated from the temperature dependencies of the existing phases lattice parameters.

As it is seen from the table 3, the rhombic phase, crystallized by the structural type Cu₂Te, is strongly deformed in the direction [100], i.e. $\alpha_a > \alpha_b \approx \alpha_c$ but the rhombic phase, crystallized by the structural type CuAgTe, is deformed in the direction [010], i.e. $\alpha_a < \alpha_b > \alpha_c$. It is the main reason of the instability of the both rhombic phases, which at 469 K transfer into the high-temperature primitive cubic phase.

Table 3

		<i>Т_{ехр.}</i> К	The line expansion coefficient 10 ⁻⁶ degree ⁻¹					
T _{str.} K	Modification		$\alpha_{_a}$	$\alpha_{_b}$	α_{c}	$\overline{\alpha} = \frac{\sum \alpha_i}{3}$		
469	Cu ₂ Te	293-373	29.7 20.8	16.7	16.0	20.8		
		293-425	29.8	22.7	15.0	22.0		
	СлАдТе	293-373	25.6	30.6	21.1	28.0		
	Curigite	293-423	23.7	37.9	26.0	29.2		
	P ₁	473-573	0.80					
	P_2	473-573	17.3					

The heat expansion of $Cu_{1.50}Ag_{0.50}Te$.

- Kien Van Con, H. Rodot. Domaine d'existance et proprietes electriques des composes du systeme Cu-Te. Compt. Rend. Acad. Sci. (Paris), 1965, <u>260</u>, p.1908-1914.
- [2] H. Novotny. Z. Metallkunde, 1994, <u>37</u>, p. 40-42.
- [3] A.L. Stevels. Phase transitions in nickel and copper selenides and tellurides. Philips. Res. Repts., 1969, <u>24</u>, p. 124.
- [4] *M.U. Tsypin and A.A. Chipizhenko.* Izv. Ak. Nauk, SSSR, Ser. Neorgan, Mater., 1974, <u>10</u>, p. 1210
- [5] P. Kubaschevski and L. Nolting. Ber. Bunsenqes, Phys. Chem., 1973, <u>17</u>, p. 70.
- [6] *H. Gravemann. and H. Walbaura.* Z. Metallk., 1956, <u>47</u>, p.433.
- [7] F. Guastavino, H. Luqueet and J. Bougnot. Etude du diagramme de phase du sustem Cu-Te dans le

damaine de la solution solide $Cu_{2-x}Te$ (0<x<16). Mater. Res. Bull., 1956, <u>8</u>, p.935.

- [8] J. Bougnot, F. Guastavino, H. Laquet, D. Sodini. Etude du domaine d'existence de laphase d" du Tellure cuivreux appartir de la conductive electrique. Müter. Res. Bull., 1973, <u>5</u>, p.763.
- [9] *N. Vouroutzis and Monolikas.* Phys. Stat. Sol., (a), 1989, <u>111</u>, p.491.
- [10] L.V.Rustamova, G.B.Gasimov, K.M.Jafarov, Y.G Asadov. Neorganichesкiye materiali, 1991, vol. 26, №10, 2065.
- [11] Y.G. Asadov, S.Y. Asadova, A.I. Movlamverdiyeva, F.K. Isayev. Neorganicheskiye materiali, 2002, volume 38, №11, c.1-6. (in Russian)

Y.G. Əsədov, R.B. Baykulov

Cu_{1.50}Ag_{0.50}Te KRİSTALINDA QURULUŞ ÇEVRİLMƏSİ

Yüksək temperatur rentgendifraktometrik metodu ilə Cu_{1.50}Ag_{0.50}Te kristalında quruluş çevrilməsi tədqiq edilmişdir və göstərilmişdir ki, otaq temperaturunda qəfəs parametrləri a=7.319 Å, b=22.236 Å, c=36.458 Å və a=3.12 Å, b=4.04 Å, c=6.87 Å olan iki rombik fazadan ibarət olub, 469 K-də qəfəs parametrləri a_1 =7.0091 Å və a_2 =6.8787 Å olan iki primitiv kub fazaya keçir.

THE STRUCTURAL TRANSFORMATIONS IN Cu_{1.50}Ag_{0.5}Te

Ю.Г. Асадов, Р.Б. Байкулов

СТРУКТУРНЫЕ ПРЕВРАЩЕНИЯ В Си_{1.50}Аg_{0.50}Те

Высокотемпературным рентгендифрактометрическим методом исследовались структурные фазовые переходы в Cu_{1.50}Ag_{0.50}Te и было показано, что при комнатной температуре Cu_{1.50}Ag_{0.50}Te является двухфазным и состоит из ромбической фазы с параметрами решетки a=7.319Å, b=22.236Å, c=36.458Å и ромбической фазы с параметрами решетки a=3.12Å, b=4.04Å, c=6.87Å. С повышением температуры при 469 К обе ромбические фазы превращаются в две примитивные кубические фазы с параметрами a_1 =7.0091Å и a_2 =6.8787Å соответственно.

Received: 27.02.03