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The process of the transient radiation of the non-invariant relativistic source of the electromagnetic field, in particularly, the magnetic 

dipole moment in the plane-layered medium is considered. The general expressions, describing the radiation field and change of the own 
field are obtained. The analysis of the obtained formulas for the ultrarelativistic velocity of the magnetic moment is done. 
 

1. INTRODUCTION 
 
The investigation of the transient radiation of the non-

invariant relativistic source of the electromagnetic field of 
charge had been carried out firstly half an age ago in the 
work of Ginsburg and Frank [1], in which it was shown, that 
the so-called transient radiation appears at the charge motion 
through the plane boundary of the separation of two isotropic 
mediums with the different physical properties, if the charge 
have the constant velocity, which is less, than the phase 
velocity of radiation in medium. The radiation is mainly 
directed along the charge motion at the high charge 
velocities.  

The transient radiation has been the subject of the 
intensive investigations during the last decades. The many 
investigations were carried out for the creation of the 
practical systems, using the transient radiation for the 
identification of the relativistic particles, which are one of the 
more important problems in the high energy physics.  

The investigation of the transient radiation of the non-
invariant sources of the electromagnetic field, in particular, 
the dipole moment was considered in the ref [2-5]. The 
question about the transient radiation as invariant so non- 
invariant sources on the blurred boundary of the separation 
of the mediums was considered in the ref [4-7]. The present 
paper, deals to the transient radiation of the magnetic 
moment in the weakly nonhomogeneous plane-layered 
medium. 

 
2. EQUATIONS FOR THE HERTIZIAN VECTORS  
    IN THE NONHOMOGENEOUS MEDIUM AND  

         THEIR FOURIER TRANSFORMATIONS 
 
Let’s consider the non-magnetic  )1( =µ  non-

homogeneous medium, the dielectric constant of which 
depends on the coordinations: ε=ε(x,y,z). In addition, for the 
magnetic Hertizian vector mΠ

r
as in the case of the isotropic 

medium we obtain the following nonhomogeneous wave 
equation: 
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and for the following more complex equation 
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for the electric vector eΠ

r
, in the right part of which the two 

last members are caused by the medium inhomogeneous 
respect of the dielectric constant, the change of which on the 
layer thickness of the medium inhomogeneous is the reason 
of the creation of the radiation field and change of the eigen 
field; M

r
and P

r
are vectors of the magnetic and electric 

polarization. They are defined by the following expressions: 
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 is D’Alembert’s operator in the 

case of the nonhomogeneous medium, mr  is the magnetic 

moment and [ ] pm rrr
=β  is the electric dipole moment, 

combined with the magnetic moment, moving with the 
constant velocity. 

  In the general case the equations (1) and (2) impossible 
to solve. They are solved exactly or approximately only when 
the dielectric constant depends on the only one variable. In 
the present paper the dependence ε=ε(z) of the dielectric 
constant of the medium, called the plane-layered is 
considered. The solutions of the equations (1) and (2) are 
obtained by the method of the consequent approximation; in 
addition, one takes into consideration, that: 
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                     ε(z) = ε°+δε(z) ,                                      (5) 
 

where em , ΠδΠδ
rr

 and δε(z) are small values of the first 

order, oε  is the dielectric constant of the homogeneous 
medium. The summand δε(z) in the function (5), caused by 
the dielectric inhomogeneous, has to change gradually from -
∆ε/2  to  the  +∆ε/2  on  the all inhomogeneous, in addition, 
ε1=ε°-∆ε/2 and ε2=ε°+∆ε/2. From (1) and (2) with (3-5) we 
obtain the following equations: 
 

         o )t,r(M4)t,r(o
m

rrrr
πΠ −=   ,                       (6) 



THE TRANSIENT RADIATION OF THE NON-INVARIANT SOURCE IN THE PLANE-LAYERED MEDIUM 
 

35 

 
         o )t,r(P4)t,r(o

e
rrrr

πΠ −=   ,                        (7) 
 

         o 2

o
m

2

2m t
)t,r(

c
)t,r(

∂
∂
⋅=

rr
vr ΠεδΠδ ,              (8) 

 

                   o ( ) [ ]
t

tr
c

e
z

tr
z

e
t

tr
c

tr
o
mo

eo

o
e

e ∂
Π∂

⋅
∂
∂

−Π∇
∂
∂

⋅+
∂
Π∂

⋅=Π
),(1,),(1),(),( 332

2

2

rr
rrrrr

rr
vr εδεδ

ε
εδδ                       (9) 

 

where o 2
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ε  is the D’Alembert’s operator for 

the homogeneous nonmagnetic medium. 
  In considered problem the all values it is need to expand 

in the Fourier integral on the time and transverse component 
of the radius vector because of the homogeneous in the time 
and on the directions, which are perpendicular to the field 
source velocity [2]: 
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and e.t.c. In addition, we obtain the Fourier images of the 
equations (7-9): 
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the longitudinal component of the vector of the radiation 
field and 
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the Fourier images of the magnetic and electric polarizations. 
 
3. THE RETARDED SOLUTIONS OF THE  

          EQUATIONS 
 
We know about the solutions of the equations (11) and 

(12) [3]: 
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the Fourier images of Hertizian vectors 0

m χωΠ r
r

 and 0
e χωΠ r
r

 

define the eigen field of the source in the homogeneous 
medium with the dielectric constant ε° (the radiation field in 
the homogeneous medium is supposed to be absent). The 
main problem is that solving equations (13) and (14) it is 
necessary to find the additions to the zero solutions (17) and 
(18), corresponding to the eigen field, and the general 
solutions of the homogeneous equation, defining the 
radiation field. 

For the solutions of the equations (13) and (14) firstly it is 
need to expand ∂ε(z) in the Fourier integral: 
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By way of the concreate expressions for ∂ε(z) we can 
choose the following functions: 

 

         
z

zth
2

)z(
∆

ε∆εδ =        ,                            (20) 

 

           
z

zarctg)z(
∆π

ε∆εδ =  ,                          (21) 

 

           [ ]dxzxz
z

o
∫ ∆−

∆
= 2)/(exp)(

π
εεδ     ,      (22) 

              



I.M. ABUTALIBOV, M.B. ASADOVA, I.G. JAFAROV 

36 

the Fourier images of which are defined by the appropriate 
expressions: 
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Substituting the solutions (17) and (18) and the equality 
(19) in the right parts of (13) and (14), we obtain: 
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The inhomogeneous magnetic and electric polarizations 

appear in the layer-inhomogeneous medium at the magnetic 
moment motion. Taking into consideration the expressions 
(15) and (16), the right parts of the equations (26) and (27) 
can be expressed trough the magnetic and electric 
polarizations correspondingly, in addition, the last three play 
role of the source functions. That’s why at the solving it is 
need to take into consideration, that Green functions in the 
left part of the equalities have to be retarded, i.e. to describe 
the retarded fields: 

                                

( )[ ]
η

ηηηη
υωηη

δ χω
χω d

ziG
z

m

m ∫ −⋅−
+

−=Π
)()(

/exp)(
)(

21

r
r

r
r

  ,      (29) 

  

( )[ ]
η

ηηηη
υωηη

δ χω
χω d

ziG
z

e

e ∫ −⋅−
+

−=Π
)()(

/exp)(
)(

21

r
r

r
r

   ,      (30) 

 
where 

         222
2,1 /c

c
ωχεω

υ
ωη −°±−=        .      (31) 

 
In the considered case the Cerenkov radiation is absent as 

in the homogeneous so in the inhomogeneous parts of all 
medium, when the condition ε°<c2/υ2 is carried out, the 
values η1 and η2 became the indeed in the high frequencies 
region ε°>>χ2c2/ω2 and the expression (ε°-c2/υ2-χ2c2/ω2)<0. 
It follows from the expression  
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 that both values are 

equal to each other on the sign, i.e. if η2<0, then η1<0. 
Introducing the designation ξ=η+ω/υ, then we obtain  
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Taking into consideration the introduced designation, the 
integrals (29) and (30) are written in the form of: 
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For the diverging waves the ratio of the exponent in the 

exponential function, being in the integrand expression, must 
be positive z>0. That’s why at the forward radiation 
(z>0)ξ1>0, and at the back radiation (z<0)ξ2<0. It means that 
if z>0, then the forward radiation field is proportional to 

( )c//cziexp 222 ωχεω −° , and if z<0, then the back 
radiation field is proportional to 

( )c//cziexp 222 ωχεω −°− . 
To obtain the retarded solutions of the equations (32) and 

(33), satisfying the principle of the causality, it is necessary 
to make the analytic continuation of the integrand function at 
z>0 on the upper complex half-plane, and z<0 on the low 
complex half-plane and instead of the detour of singular 
points to shift them from the indeed axis. It can be done, if 
we consider that ε° has the infinitesimal addition. In addition 
the pole ξ1=ξo changing on ξo+iωδ/c passes to the upper 
half-plane, and the pole ξ2=-ξo changing on -ξo-iωδ/c, passes 
to the low half-plane (here δ is the infinitesimal positive 
number), and the pole ξ3=ω/v, not having ε°, isn’t shift 
staying on the indeed axis; the corresponding contours for 
z>0 and  z<0 are given in the picture. 
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Fig. Circuit of integration in complex plane 
 
The integrand functions (32) and (33) are analytic in the 

all points of the indeed axis, besides the points ξ1, ξ2, ξ3, 

being the simple poles, and satisfy ( )( ) 0G
12

0
2 →−

−
ξξξ

v
 

and ξ→∞. As the integrand functions have the finish number 
of the simple poles on the indeed axis, so integrals are 
understood by their main values [8,9]. That’s why at z>0 we 
have:  
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In the formulas (34) and (35) the first summands define 

the change of the eigen field, accordingly, on the and against 
the direction of the source movement correspondingly and 
second summands define the forward and back radiation 

field. The such solution corresponds with the diversing wave, 
distributing in two sides from the boundary of the blurred 
band. 

In the result of the calculation of the residues of the first 
terms in the formulas (34) and (35) in the pole ξ=ω/υ, not 
depending on the concreate expressions for δεξ, we obtain the 
similar additions to Hertizian vectors, defining the change of 
the eigen field: 

 
                                    

                   ( ) ( ) [ ] )/exp(//
)2(

,, 222222
22

2

, υω
β

ωχυε
ωυπ

εχωδ zi
m

m
ccc

z
zzs

em
⎭
⎬
⎫

⎩
⎨
⎧

−−°
⋅∆

⋅=Π
−

rr

r
rr

     .                   (37) 

 
The Hertizian vectors describing the radiation field, are 

found by the calculation of the residues of the last terms in 
the formulas (34) and (35) in the poles ξ=ξ1 (the radiation 
forward) and ξ=ξ2  (the radiation back) correspondingly: 
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In the formulas (37) and (38) and the following ones the 

index s corresponds with the eigen field, and the index r 
corresponds with the radiation field; the upper sign and index 
1 corresponds with the forward radiation, and the low sign 

and index 2 corresponds with the back radiation; δεξ1,2
 are 

values of the changing of the dielectric constant in the poles 
ξ=ξ1 and ξ=ξ2.
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И.М. Абуталыбов, М.Б. Ясядова, И.Щ. Жяфяров 
 

МЦСТЯВИ ТЯБЯГЯЛИ МЦЩИТДЯ ГЕЙРИ-ИНВАРИАНТ МЯНБЯНИН КЕЧИД ШЦАЛАНМАСЫ 
 

Мцстяви тябягяли гейри-магнит мцщитдя гейри-инвариант релйативистик електромагнит сащя мянбянин, хцсуси щалда магнит дипол 
моментинин, шцаланмасына бахылыб. Шцаланма сащяси вя мяхсуси сащянин дяйишмясини тясвир едян цмуми ифадяляр алынмышдыр. 
Магнит моментинин ултрарелйативистик сцряти цчцн алынан дцстурларын тящлили апарылыр.  

 
И.М. Абуталыбов, М.Б. Асадова, И.Г. Джафаров 

 
ПЕРЕХОДНОЕ ИЗЛУЧЕНИЕ НЕИНВАРИАНТНОГО ИСТОЧНИКА В ПЛОСКОСЛОИСТОЙ СРЕДЕ I 

 
Рассматривается процесс переходного излучения неинвариантного релятивистского источника электромагнитного поля, в 

частности, магнитного дипольного момента в плоскослоистой немагнитной среде. Получены общие выражения, описывающие 
поле излучения и изменение собственного поля. Проводится анализ полученных формул для ультрарелятивистской скорости 
магнитного момента.  
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