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GREEN FUNCTION METHOD IN A FERROMAGNETIC SUPERLATTICE

V.A.TANRIVERDIYEV
Institute of Physics of the National Academy of Sciences of Azerbaijan
Baku Az -1143, H. Javid ave.33.

The expression of Green function for different layers in a ferromagnetic superlattice is derived by the recurrence relations technique. The
elementary unit cell of the superlattice under consideration consists of alternating layers of two simple-cubic Heisenberg ferromagnets. The

results are illustrated numerically for a particular choice of parameters

In the past few years, there has been growing interest in
the magnetic properties of artificially layered structures. With
the advance of modern vacuum science, in particular the
epitaxial growth technique, it is possible to grow very thin
films of predetermined thickness, even of a few monolayers
[1-3]. Superlattice structures composed of two different
ferromagnetic layers (Fe/Co, Fe/Cr, Fe/Ni, Co/Cr, Dy/Gd
etc.) have already been artificially fabricated. They have
potential applications in magnetic information technology.
Green’s function method interface rescaling technique
transfer matrix formalism as well as recurrence relations
technique is used for their studies [4-6]. Green function
method is the most useful among these methods. The
physical characteristics, such as spectrum of magnons, the

obtained using Green function method [7,8]. The
investigation of Green function in SLs is not new, but many
earlier papers considered only the case the SLs composed of
two different ferromagnetic or antiferromagnetic atomic
layers [9,10]. J. Mathon derived the exact local spin-wave
Green function in an arbitrary ferromagnetic interface,
superlattice and disordered layer structure in ref. [11].

As indicated in figl. we consider in this article a
superlattice in which the elementary unit cell n; layers of
material 1 alternate with n, layers of material 2. Both material
are taken to be simple-cubic Heisenberg ferromagnets,
having exchange constant J; and J, and lattice constant a.
The exchange constant between constituents is J. The
expression of Green function for different layers in the

temperature  dependence of magnetization, magnetic  superlattice under consideration is derived by the recurrence
susceptibility and others of magnetic layered structures are  relations technique.
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Fig.1. The elementary unit cell of SL consisting N different simple-cubic Heizenberg antiferromagnetic materials. The same lattice
parameter a is assumed for all the materials. Antiferromagnetic layers consist of n; (j=1,2,...,N) atomic layers. The layers

are infinite in the direction perpendicular to the axes z.

The Hamiltonian of the system can be written in the form
1 Lo
H =—EZJi'j(SiSj)—ZgiuB(HfA) TH,). O
L] i

where the first term describes exchange interactions between
the neighbouring spins and the last terms include the

Zeeman’s energy and magnetic anisotropy energy. The axis z |

{6() - gi/uB(HO + H(iA)) - 4‘Jnn7(k||XS§> - ‘Jn,n+1<Sﬁ+1> - ‘]n,n—1<8§—l>}Gn,n'(a)’ I(II) +
2(S7)0, ,

+ ‘Jn,n+lGn+1,n’(w’ kll) + ‘Jn,n—lanl,n'(a)’ kll) =

of the coordinate system is normal to the film interfaces [001]
and external field Hg is assumed to be parallel to the axis z.

H(iA)(izl, 2) anisotropy field for a ferromagnetic with

simple uniaxial anisotropy along the z axis.
Employing the equation of motion for the Green function

G;;(t t) = (S;(t); s;(t)) one obtains the following

equation after two dimensional Fourier transform [9]

O]

here, n is the index of an atomic layer and (k| ) is defined lare valid in the low-temperature limit and random-phase-

as follows ;(k”):l—O-S(cos k,a+cos kya). Equation (2)

approximation (RPA) has already been done.
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The equation (2) can be solved by recurrence relations 2005(91(2)) -
technique [12] to relate the Green functions for interface 12~ 1 0
layers of the elementary unit cell
Gm +ny +1,n’ Gl,n’ 51 T. == L (0) - /112(21) ‘]1(2)<Sl(2)>J,
G . =T G, . - s, 3) 1R J(Sxay) \ = I(Sxay) 0
_ w — NECTY)
where T = TZRT2n2_2T2LT1RT1n1_2T1|_ and the matrix Tog, T1(2)|_=7J ; [ J E§Zl)> 02 @ J 4)
T2, Tar, Tir, Trand Ty have the form: | 12 L
- 2/J
TZRTZr|2 72T2 LTlRTln1 2 ( 0/ lj n ,:1
n, - n,-n'-1 0 !
Tl 2T, T T ™ 2, 2<n'<n,-1
2(S — 2,,)/33,(5,)?
TZRTan—z( Sy) (a’ 21)/ 2(S2) j n'=n, .
(élJ B - 2(S.)/3¢S,) ®)
5,) - 24
: TZRTznz_Z( 0/ Zj n'=n,+1
ny—n,-n'-1| 2/‘J2 ’
TorT, 0 n,+2<n’<n, +n,-1
- 2(S,)/J(S
(-2
0
Ay = GiptdHo + HIGD + J1y(Sizy) + I(S5ay) + A yr(ST (2)>7(k||)
6, and 6 are defined by the expression
COS(@l(Z)) = b (91(2 ng(Hg + H )+ 2‘]1(2) <S1(2)> + 4, <Sf(2) >Y(k||)_ 03)/2‘]1(2)<51(2)> (6)

For‘bl(z)‘ >1, by, = cosh(g, ), and one replaces |(— 1)" sinh(nel(z)) for by, < -1. The matrix

sin(n&l(z)) by sinh(n&l(z)) for b1(2) > 1 and ¢lementsof T is given by the following expression

|
T, = (X11y11 — X2Y12 )/(‘] 2J 1J2<81>2<Sz>2 Sin(gl)Sin(gz ))

T = (XY + X00Y1,)/(323,3,(5,)2(S,)? sin(,) sin(6,))

Xy =@ —4, f sin((n, - 1), 123,80 ~4;)sin((n,- 2)0,) L3S)?sin((n, 3)0,) @
IS0 — 2,)sin((n, - 1)9,) + 3.¢S,) sin((n, - 2)a,)]

-3%(s,)? sin((n, - 1)6,)

X12

X22

the matrix elements T,;, T2, and Yy, Y10, Yo by replacing all [ The system is also periodic in the z direction, which
subscript 1 by 2, 2 by 1 in - Ty, T and Yuy, Yio Yz, lattice constantis L = (n, + n, Ja. According to Bloch’s
respectively. theorem we can write [13,14]
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[CI G, The expression of Green function G, . (@, K;,) and
L+, +1, _ exp[iKZL] 1,n (8) p 1,n( II)
I o.n Go.n (a) K, |) are obtained by using equation (3) and (8).
|
Gln,((o,k”)= (8,75 —8,Ty, )eXp[ iK L] 5, ’ GOn’((’Olk”): (62T11 _61T21)9Xp[_ 'KzL]_82 9)
’ 2c0s(K,L)-T,, - * 2c0s(K,L)-T, - T,
The Green’s function for all layers of elementary unit of Green function for the left-hand (n’ = 1) and right-

superlattice are related with G, (‘" kII) and Go_ (‘" kII) hand (n’ = n,) layers of components 1 in elementary unit

by reccurence relation technique. Using (4), (5) and (8) one  cell of the superlattice have the form
can calculate the Green’s function for different layers in
elementary unit cell of the superlattice under the consideration. |

Gl’l(a), kII) = Gni,nl (w’ kII) = (251T12/(‘Jsz ))/(2 COS(KZL) -Ty - T22) (10)

Green function for the bulk layers (2 <n' <n; - 1) of components 1 in elementary unit cell of the superlattice has the
form

Gn’,n’ (w’ kII)= [X;zxiz (T22 _Tll) +(X£2 )2T21_ (Xiz )2T12 ]/b-SJ 12‘]3<Sl> Sin2 (91)(2 COS(KZL)_Tll_ T22 )] (11)
Xil = (a’ - /112)2 Sin((n' - 1)H1) + 2‘]1<Sl>(a) - le)Sin((n, - 2)‘91) + J12<Sl>2 Sin((n' - 3)01)

Xizz‘]<Sz>[(a’_/112)Sin((n,_l)el)‘h]l(Sﬁ sin((n’—2)6’l)], X’22 = <S > Sln(( - 1)0 )

| Green function for the left-hand layer (n’= n1+1), the

i bulk layers (nl +2£n’sn1+n2 —1)and right-hand layer
o RE i)
e 1 (n’:nl+n2) of components 2 in elementary unit cell of the

e : superlattice are obtained by replacing all subscript 1 by 2, 2
] by 1 and (n’—>n’+n1) in the Green’s function for the same

layers of components 1 in elementary unit cell of the
—  superlattice, respectively.

For numerical illustration of our result we consider the

11 I =1 spin wave dispersion-curve of the superlattice under

consideration. As known the spin-wave spectrum is obtained

0 : i from the poles of Green function. fig 2(a) shows the bulk

(] 1 2 i [] 1 2 spin-wave dispersion curves of the component 1 and 2 for a

k,a K.L particular choice of parameters, while fig.2(b) shows the

Fig.2. Bulk spin — wave dispersion graphs for [001] propagation spin-wave dispersion curves of the superlattice. In the

with parameters J, /3, =2;9,=9,; frequence range, where K,, and K, are real, the

glﬂBH(lA)/31<Sf> 0.01: superlattice dispersion curve exhibits broud pass bands and

o 5 narrow stop bands. The pass bands are narrow and the stop

g, ugHy /J1<31> = 0.03. bands are broud where at least one of the wave vectors is
complex.
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FERROMAGNIT IFRAT Q9F9SD9 QRIN FUNKSIYASI METODU
Rekurens slagaler metodu ile ferromagnit ifrat gafesin muxtslif laylari G¢ln Qrin funksiyasinin ifadssi tapilib. Baxilan ifrat
gefesin elementar 6zayi iki mixtlif sade kubik Heyzenberq tip ferromagnit laylarin ndvbalegsmasindan taskil olunub. Alinan
naticaler parametrlorin segilmis giymatlari Gglin kemiyyatce tasvir olunub.
B. A. TanpbiBepaneB

METO/ ®YHKIIUA TPUHA B PEPPOMATHUTHOM CBEPXPEIIIETKE

C NOMOIIBIO TEXHUKH PEeKYPPEHTHBIX COOTHOLICHWH HaiineHb! BblpaxkeHHs QyHKUMM ['pUHA 171 pasiInyHBIX cI0eB GeppoMarHUTHOM
CBEpXpELIETKH. DIeMeHTapHas s4eifka pacMaTpUBacMON CBEPXPEIIETKH COCTOMT M3 UEpEAYIOIIUXCSA CIOEB ABYX PA3IMUYHBIX MPOCTBIX
Ieit3enOeproBekux GeppoMarHeTUKOB. Pe3yabTaTsl IPOMILTIOCTPUPOBAHEl  KOJMYECTBEHHO JUIS BBIOPAHHBIX 3HAYCHUH MapaMeTpoB.
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