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RAMAN SCATTERING IN QUANTUM WIRE IN A MAGNETIC FIELD
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Institute of Physics of Azerbaijan National Academy of Sciences
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Electron Raman scattering are investigated in a parabolic semiconductor quantum wire in a transverse magnetic field neglecting
phonon-assisted transitions. The ERS cross-section is calculated as a function of the frequency shift and the magnetic field strength. The
process involves an interband electronic transition and an intraband transition between quantized subbands. We analyze the differential
cross-section for different scattering configurations. We study selection rules for the processes. The singularities in the Raman spectra are
found and interpreted. The scattering spectrum shows density-of-states peaks and interband matrix elements maximums and strong resonance
when scattered frequency equals the “hybrid” frequency or confinement frequency depending on polarization. Numerical results are

presented using parameters caaracteristic of GaAs/AlGaAs.
1. Introduction

Low-dimensional semiconductor systems, particularly
quantum wires are attracting considerable attention recently,
in part, because they exhibit novel physical properties and
also because of potential applications involving them. In
recent years, a number of innovative techniques have been
developed to grow or to fabricate and to study experimentally
a variety of quantum wire structures having different
geometries and potentials.

Many recent experimental and theoretical studies have
been performed on quantum wires subjected to a transverse
magnetic field [1-7]. The electronic properties of quantum
well wires in a transverse magnetic field have investigated in
[8-9]. The subband dispersion and magnetoabsorption have
been studied for rectangular QW in [10].

Magnetic field applied perpendicular to the wire axis,
"free electron" direction, can change significantly the
electronic states of semiconductor quantum wire structures.

Electron Raman scattering seems to be a useful
technique providing direct information on the energy band
structure and the optical properties of the investigated
systems [11-12]. In particular, the electronic structure of
semiconductor materials and nanostructures can be
thoroughly investigated considering different polarizations
for the incident and emitted radiation [13].

The differential cross-section in general case, usually
shows singularities related to interbanda and interband
transitions. This latter result strongly depends on the
scattering configurations: the structure of the singularities is
varied when the photon polarizations change. This feature of
ERS allows to determine the subband structure of the system
by direct inspection of the singularity positions in the spectra.

For bulk semiconductors ERS has been studied in the
presence of external applied magnetic and electric fields[14-
16]. In the case of a quantum well preliminary results were
reported in [17]

Raman scattering in low-dimensional semiconductor
systems has been the subject of many theoretical and
experimental investigations [18, 19]. |
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Interband ERS processes can be qualitatively described
in the following way: after the absorption of an external
photon from the incident radiation field a virtual electron-
hole pair is created in an intermediate crystal state by means
of an electron interband transition involving the crystal
valence and conduction bands. The electron (hole) in the
conduction (valence) band is subject to a second interband
transition with the emission of secondary radiation photon.
Therefore, in the final state we have a real electron-hole pair
in the crystal and a photon of the secondary radiation field.
The effect of external applied fields on this kind of processes
for bulk semiconductors were investigated in [15, 16]. In the
case of a quantum well preliminary results were reported in
Ref. [17].

In this work we present a systematic study of the
interband ERS in direct band gap semiconducting parabolic
quantum wire in a transverse magnetic field. In these systems
due to electron confinement and magnetic field the
conduction (valence) band is split in a subband system and
transitions between them determine the ERS processes.
Numerical results for the ERS differential cross-section are
presented using parameters characteristic of GaAs/AlGaAs.

This paper is organized as follows. In Section II the
energy spectrum and wave functions for QW with parabolic
confinement potential are given in a transverse magnetic
field. In Section III we present the general relations needed
for our calculations of the ERS cross-section. Section IV is
devoted to the calculations of the ERS differential cross-
sections. Finally Section V is concerned with the discussion
of the obtained results.

2. Wave functions and energy spectrum

We consider a quantum wire aligned along the y
H =(0,0,H)
applied along z direction. The quantum wire is characterized
by parabolic confinements in the plane (X, z). The effective

mass Schrodinger equation for electron in conduction band
can be written as

direction with transverse magnetic field

1
+ M2, (¢ +22) (%, ¥, 2) = Eg, (%, ¥, 2) (1)



T.G. ISMAILOV. B.H. MEHDIYEV

where A= (0, HX,0) the vector potential in the Landau

gauge and @ characterizes the parabolic potential of the
QW for electron in conduction band. We look for the solution

y
. y.e
in the form where

v, (% Y,2) = p(0n(2)e"

Nie>N2e> y e

E. = (Nle +1jh(De +(N263 +1Jha)0e
2 2

= lee

is the quasi-momentum of an electron.

Pye =7k,

After trivial shifting of the origin of coordinates and
separating the variables in the usual way we obtain the
eigenfunctions and eigenvalues of the Schrodinger equation

)
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The wave functions and energy eigenvalues for electron in valence band can be written as

W

Nih *Nap -Ky

1), ~ 1
Eh = _Eg _(Nlh +Ejha)h —[Nzh +5Jh(00h

where Eg is the gap energy of the bottom of the conduction
band in the absence of the external magnetic field, ® o
oscillator frequency of the parabolic potential for electron in
the valence band. In Egs. (2) and (3)

2 2
Dy, = | Dge(ny + Dgqy) (4)

is "hybrid" frequency. The subscript € and h denote
conduction and valence band electrons, respectively.

= ONin
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is the cyclotron frequency, M, is the effective mass.
ho,
_ (h)
Xoe(h) = 3 Kyeqh) ©)
Me(n)@e(n)

is oscillator centre.
The full energy spectrum in (2) and (3) is governed by
quantum numbers Nieg), Noen and Kyeg).
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where parameters [ are the units of length.
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is the Hermitian polynomial.

3. Preliminary relations

We start with the following general expression for the

d-S

2 e2
deV:(mﬁzJ

V1 z‘

Volf

where

Ai,f :Lz

sy -E, +E)

(Feprire,pl) (fepirrepi

2

Qdv
light with frequency V,and polarization € into light with

scattering cross-section of the scattering of incident

frequency v, and polarization €;:

(11)

m, T\ E; -E, +hav,

Here i, r and f denote the initial, intermediate, and final
states, respectively, E;, E, and Es are the corresponding

energies, [ is the one-electron momentum operator and M,
is the free electron mass. vV =V, —V, is a frequency shift.

Equations (1) and (2) are based on the electric dipole
approximation. The J&function in (1) express the energy-
conservation condition

hv,=hv,+E; —E, (13)

Then Raman scattering processes consist of two steps.

First, an incident light quantum is absorbed creating .':m|

12
E,-E, —-#hv, (12

Ei = Eh(NlhaNzhakyh);
E(Nlei' 2e° ye) ‘N

‘NlhﬁNzh’kyh> =
Nse-Kye ) =

| . .
electron —hole pair between the state (Nlh’ Nzh) in the

valence band and the state (N N ) in the conduction

le>
band. Second, a scattered photon is emitted due to an

electronic transition from the state (N N ) to the state

le>
(N,..N,

les ) in conduction band. The Raman shift AV is
equal to the excitation energy of the electron-hole pair
created in the scattering process.

In our model we assume that the conduction band is
empty and the valence band completely occupied by
electrons. We neglect all the transitions assisted by phonons.

The initial, intermediate and final state energy and wave

functions are:

UVV/(Nlha Nzh’kyh)
Ucl//(Nl'e’ N‘Ze’k\:/e)

Ef :Ee(Nle’NZe’kye); ‘Nleﬁ 2e»kye>:UvW(N1hsNzhskyh) (14)
4. Calculation of Raman scattering cross section
Using Egs. (14) the DCS for ERS can be written as
2
d?s e’
= 2 Nlh N2e»NiesNoe h 5(7;”/ N E -
dQdv mC NieNoe NinoNop Kye !
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0 NiesNope h 1lh?»
<N1e’ N2e’ kye 0 N'le’ N.Ze’ k.ye><N.1e’ N'Ze’ k
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(16)
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and
E =N ! ha.,..: E =[N ! 1) :
Mo — | Vtetn 5 1@y Nae = |V 2e() F 5 1 @0eqny 17

The matrix elements of the interband transitions can be written as

<N1e’ NZe’ kye
<N1e’ NZe’ kye

N-Ze’ k-ye> = <N1e’ NZe’ kye
ejypy‘Nle’ 2e” k.ye> + <N1e’N2e’ kye

Nier Noen Ko ) +
Nier Noor Kie)

Jx

(18)

jz

where

. . 17 N e N, +1
Nle’ Nze’ kye>:_ E_ ejxé‘N.Ze-NZe|: 2 5N151N1e_l Té‘N;e'Nle+lj|5kye’k'ye

<Nle’ NZe’ kye

Jx
e
19)
(Nios Noe s Koo 5y er Noes Koo ) = 1K€ 0 S\ 6, (20)
C in N N, +1
<N le> Nze’ kye iz Nle, N2e’ kye >:_ CejZ5Nie’N1e|: 2 é‘N.Ze’NZe*l_ Té‘N'ZeszeJrl é‘kye’k'ye
@
I
If we consider allowed electron transitions between element in the envelope function approximation, can be
conduction and valence bands, the interband matrix | written as

(N3es Noos Koo 68 Nypa Nopa ki) = (e, - €5) |Nlh,N.le(ky) N O @

where B, = (U, |P|u,) - the momentum matrix element
We find that the matrix elements (19)-(22) vanish unless

between the valence and conduction bands (evaluated at the following selection rule is obeyed

k = 0)and

The EHP does not change its total momentum during the

o ~ ~ Kie = Ky, = Ko =k (25)
I (k ) _ J- X Xon X Xoe q
Nlh-N;le Y - ¢N1h Eh ¢N;le Ee

(23)  absorption or the emission of a photon (photon momentum is
neglected).

> Using (10) it can be obtained that
N2h N2e J. 77N2h( JUN-Ze [L_sz (24)
e

| iy - (E)%{ 1 J% NIN,, ! Nu/2] [Ny /2] (- 1)k+j2N1h+N'1e—2k—2j (LJNR—ZJ |
Man-Mae ™ ) \LL ) f2%eon Nt & Sk (N, - 2k (NG, - 2§ L

. (L)N”_Zk”“z” Ny —2kp )Nm-zk-ﬂ“'“‘zz"*” N -2 +u) (26)
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L, P Ny, — 2k — ) v=0 V2 (N e — 20+ u V)
v+l - _
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. X-X scattering o | Performing the summation over |(y in (15) we obtain
We first consider the case where both the incident and the

scattered radiation are polarized parallel to the x axis. | expression for DCS of the ERS process:

d*s* Vy—V N
=0 | : k )1 20 . le | ) _

deV 0 VO N]hst%lesNZe|:N§lze Nlh»Nle( y( )) Nap,Nae Nje,Nje [ 2 Nie,Nje-l
_M.%_Nﬂj.[l + 1] : 1 (28)
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E, E, E, E, E,
where
2 = 222
e’ L, || %
e S E A
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fi \ D
A(v) :E_(Vo =V +(Ny =Ny )@y + (N, — Nle)a)e) (30)

g

fi . -
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and K, (v)-is the root of the delta function argument
1
(hV B Eg B ENle B ENlh B ENZe B ENZh )2
2 2
@ | 1 %0
me We rnh @y,

Z-Z Scattering
We next display the Raman cross section for the case where the incident and scattered light are polarized parallel to z axis:

(32)

ke = 2

d?s# vV, — V N,
dQdv =01 Z { Z INlh.N'le (ky(v))- INzh,N'ze '5N'19.N19 [ 22 .5N.ze,Nze—l -
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NihsNansNiesNoe
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2
N, +1
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Let us make some remarks concerning the above

equations. From Eq.(27) it follows that |N N vanishes

2h>"N2

unless Na, + N, =2N, where N is an integer. So,

transition can only take place between N2h and N'2e

subbands with the same parity (2M — 2N; and
2m+1—>2n+1; M and N are integers). But for Eq. (26)

quantum numbers N, and N,, can change arbitrarily.

Hence, the following selection rules are obtained for
interband transitions:

‘Nlh - N.le
‘Nzh - N-Ze

As can be seen from Eqgs. (28) and (33) the DCS is
directly proportional to the density-of —states of carriers in
the valence and conduction bands and the interband matrix
elements. In this case, the scattering spectrum shows density-
of-states peaks and interband matrix elements maximums.
The positions of these structures are given as follows:

=0,12,...;
=0,24...

v =k, +E, +E +E,  +E 3

Here, the following selection rules must be fulfilled:

Nle = Nle * 1’ NéezNZe

for X-X polarization and N, = N, * 1,
N.1e = Nle for Z-Z polarization. In this case when
Ny — Ni| =2n +1  the spectrum  shows
maximums and when ‘Nlh - N'1e = 2N the ERS

spectrum shows singular peaks. The peaks and maximums
related to these structures correspond to interband EHP
transition and their position depends on the magnetic field.
Other singularities of equations (28) and (33) occur
whenever A(V) = 0. In the X-X scattering configuration

this singularity is

hv = hv, — ho, (36)
Here the following selection rules is fulfilled:
Nle = Nle + l’NZe = NZe'

28

For Z7Z-Z scattering configuration Raman singularity is

hv = hvy — hoy, (37)
In this case the selection rules are N}, = N,
N, = N, + 1.

As can be seen from equations (36) and (37) these
frequencies correspond to electron transitions connecting the
subband edges for a process involving the conduction band
(i.e., intraband transitions).

We can also notice that Y-Y scattering configuration is free
from Raman singularity and related to selection rules
Nie =N, Npe = Npe.

le>

5. Discussion of the results

In the following we present detailed numerical
calculations of DCS of GaAs/AlGaAs parabolic quantum
wire in the presence of uniform magnetic field as a function

hv / Eg . The physical parameters used in our expressions

E, = 1.5177ev, m, = 0.0665m,,

m, = 0.45m, (the heave-hole band). Taking the ratio

60:40 for the band-edge discontinuity [20, 21], the
conduction and valence barrier heights are taken to be

A, = 255 meVand A, = 170 meV. The oscillation

e

are: e

frequencies @, and @y, of the parabolic quantum wire are
determined via

2Aq 1y

2
Wy = a

Mecny

where d -is the quantum wire diameter.

In figure 1 (a)-1(d) we show the Raman spectra of the
parabolic quantum wire in the X-X scattering configuration
for different magnetic fields, such as

H=0.,2-10*.6.5-10*.8.5 - 10 Gauss. The

(0]
diameter d of the QWR is 2000 A. The incident radiation
frequency was fixed as /1v, =1.82¢V. The positions of the

singularities are defined by (35) and (36).
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Fig. 1 (a)-(d). Calculated Raman cross section of the PQWR in
the X-X scattering configuration with different
transverse magnetic field.

Z-Z polarization H=25000 Gauss

@)
8
6
4
2 \(\ L\
Ot ————~ ‘ ‘ ‘ ‘
1 1.1 1.2 1.3 1.4 1.5
hv/E,
20 Z-Z polarization H=80000 Gauss
(b)
15
10
5
0
1 1.1 1.2 1.3 1.4 1.5
hv /E,

Fig.2 (a)-(b). Calculated Raman cross section of the PQWR in
the Z-Z scattering configuration with different
transverse magnetic field.

Fig.2(a)-2(b) shows Raman spectra for Z-Z scattering
configuration for magnetic fields H=2.5-10*, 8-10%, Gauss. The
other parameters coincide with those of figure 1.

The structure of the DCS, as given in the figures provides a
transparent understanding of the energy subband structure of
the parabolic quantum wire in a transverse magnetic field.

In the present work we have applied a simplified model for
the electronic structure of the system. In a more realistic case
we should consider multiband structure using a calculation
model like that of Luttinger-Kohn or the Kane model. The
above-mentioned assumptions would lead to better results but
entail more complicated calculations. However, within the
limit of our simple model we are able to account for the
essential physical properties of the discussed problem. The
fundamental features of the DCS, as described in our paper,
should not change very much in real QWR case. It can be
easily proved that the singular peak in the DCS will be
present irrespective of the model used for the subband

structure and may be determined for the values of 71V, equal
to the energy difference between two subbands
hv, = hv, — hv = E; — E} where E; > Ej
are respective electron energies in the subbands. At present
there is a lack of experimental work on this type of ERS. Our

major aim in performing these calculations is to stimulate
experimental research in this direction.
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T.H. ismayilov, B.H. Mehdiyev
MAQNIT SAHOSIND® YERLOSMIS KVANT MSFTILIND® RAMAN SO©PILMaSI

Enine magnit sahasinda yerlagmis parabolic kvant meaftilinde fononun istiraki olmadan isigin Raman sepilmasi tedqiq
edilmigdir. Elektron Raman sepilmasinin effektiv en kasiyinin tezliyin sirlismasinden ve magqgnit sahasindan asililigi
hesablanmisdir. Kvantlanmis alt seviyyeler arasinda zonalararasi ve zonadaxili kegidlarin istiraki ile bas veran proseslera
baxilmisdir. Diishen ve sapilen isidin polyarizasiyasindan asili olarag secme qaydalari masslenin mdxtelif parametrlarinin
(siklotron tezlikleri ve saxlayici potencilin tezliyi) giymatlerinde tadqiq edilmisdir. Electron Raman sepilmasinin differensial
effectiv en kesiyi hal sixligi ile bagli mexsusiyystlera ve kegidlarin matris elementleri ile bagli slave strukturlara malikdir.

T.I'. Ucmauinos, b.I'. MexTuen

JIEKTPOHHOE KOMBUHAIIMOHHOE PACCESIHUE CBETA B KBAHTOBOM ITPOBOJIOKE B
MATI'HUTHOM HOJIE

HccnenoBano anexTpoHHOe KoMOuHaruonHoe paccesinue cBera (DKPC), 6e3 ywactus GoHOHOB, B mHapaboIMYecKkol KBaHTOBOH
IIPOBOJIOKE ,B MOINEPEYHOM MarHMTHOM moje . Paccumransl 3aBucumoctu cedenuss DKPC  or caBura 4acToTbl MU MAarHUTHOTO MOJIS.
PaccMOTpeHBI TPOIECChl ¢ y4acTUEM KaK MEX30HHBIX, TaK M BHYTPHU3OHHBIX NPEXOJOB MEXIy KBAaHTOBAHHBIMHU ITOJ30HaMH. M3ydeHb
npaBuiia 0TO0pa U NMpoBesieH aHau3 AU(HepeHIAILHOIO CEUCHUs] PACCESHUS Ul PA3JIMYHBIX IIOJIApU3aLMil NaJaoMero 1 pacCessHHOro
M3JIY4EHUH M JUIS Pa3iIMYHBIX COOTHOIICHUH MEXIy MapameTpamu 3anaudl (LHKIOTPOHHBIMM YAaCTOTAMHM M YaCTOTaMH YAEP)KHBAIOLIETO
HoTeHIuana 31eKTpoHoB U AbIpok). Cedenne DKPC coaepiKUT CHHTYISIPHOCTH OOsI3aHHBIC [UIOTHOCTH COCTOSIHHN M JOTOJHUTENbHbIC
CTPYKTYDBI ,CBS3aHHbIC C MATPUYHBIMH 3JIEMEHTAMHU IIEPEXOJIOB.
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