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Solutions of the principal chiral field problem are constructed by means of Mathematica software. 
 

1. The problem of constructing of the solutions of self-dual Yang-Mills (SDYM) model and its dimensional reductions, the 
principal chiral field problem in our case, in the explicit form for semisimple Lie algebra, rank of which is greater than two, 
remains important for the present time. The interest arises from the fact that almost all integrable models in one, two and 
(1+2)-dimensions are symmetry reductions of SDYM or they can be obtained from it by imposing the constraints on Yang-
Mills potentials [1-12].  

This work is a direct continuation of [13-15], where the exact solutions of the principal chiral field problem have been de-
rived, and it shows how to obtain the further results using determined Mathematica algorithm. The discrete symmetry trans-
formation method [12] applied here allows to generate new solutions from the old ones in much more easier way than applying 
methods from [11], and the case of SL(3,C) algebra gives us a key to construct solutions for an arbitrary semisimple algebra.  

 
2. Equations of the principal chiral field problem are the systems of equations for the element f , taking values in the 

semisimple algebra, 
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In the case of  two-dimensional space: 1θ =1, 2θ =-1, ξ=1x , ν=2x . 

Following [12], for the case of a semisimple Lie algebra and for an element f being a solution of (1), the following state-
ment takes place: 

 There exists such an element S taking values in a gauge group that  
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Here +
MX  is the element of the algebra corresponding to its maximal root divided by its norm, i.e., 

 
[ ] [ ] ±±−+ ±== X2X,H,HX,XM      , 

 
−− f~  - is the coefficient function in the decomposition of f~  of the element corresponding to the minimal root of the algebra, 

1ff~ −= σσ  and where σ is an automorfism of the algebra, changing the positive and negative roots. 
In the case of algebra SL(3,C) we’ll consider the case of three dimensional representation of algebra and the following   

form of 
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The discrete symmetry transformation, producing new solutions from the known ones, is as follows:  
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3. Let's represent the explicit formulae for transformation in the case of SL(3,C) algebra  
 
          −−−+++ +++++++= 2,12,1221122112,12,12211 XaXaXahhXXXf ττααα   ,               (4) 
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In connection with the general scheme, first of all, it is necessary to find the solution of the equations (2) for the SL(3,C) 
valued function S for given f, solution of  equations (1). 

From (2) it is clear that S is upper triangular matrix and can be represented in the following form: 
                    

                      HexpXexpXexpXexpS 0222,12,111 ββββ +++=  ,                                            (5) 

where H=h1+h2. 
After substitution of the last representation of S into (2) and taking into account (4), we have at every step of the recurrent 

procedure the following relations 
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As the initial solution we'll take the explicit solution f belonging to the algebra of upper triangular matrixes: 

 

                        22112,12,12211 hhXXXf ττααα ++++= +++                     (7) 
 
The component form of self-duality equations for this case is following 
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where 122211 2,2 ττδττδ −=−=  and figure brackets of two functions g1 and g2 denotes :        
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The general solution of system (8) takes the form 
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Here the circle integration goes over the complex parameter λ. 
 By the direct check one can be convinced that (9) are the solutions of equations (8). The formulae (9) can also be obtained 

as a solution of homogeneous Riemann problem in the case of the solvable algebra [11]. 
Let’s represent two types of Backlund transformation by means of which one can construct new types of solutions of equa-

tions (8) from the known solution (9). For solutions of first two equations of (8) this two Backlund transformations are the 
same: 
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For solutions of the third equation of the system (8) they are different: 
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Note that starting, zero step of upper transformations procedure coincides with initial solutions  (9). 
Let’s return to the solution of the equation (7) at the first step of the recurrent procedure. 
Comparing (6) and (12) we came to the conclusion that 1,0

2,12,1 αβ = . 

Finally, knowing all components of matrix S and using (3) we can express the solution 
 
 

−−−−−−++++++ +++++++= 2,12,122112
0
21

0
12,12,12211 XFXFXFhFhFXFXFXFF  

 
 of self-duality equations at the first step of the recurrent procedure in terms of chains (10)-(12): 
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Using the equations of the principal chiral field problem for the group-valued element 
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So we see that the group valued elements gn+1 and gn are connected by the relation 
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 Let's represent the explicit formulae of the recurrent procedure of obtaining the group-valued element solutions. 
At every step, as it shown in [5], S is upper triangular matrix and can be represented in the following form: 
 
                               ( ) ( ) ( ) ( ) HexpXexpXexpXexpS n02n22,1n2,11n1n ββββ +++=        ,                              (15) 

 
where H=h1+h2 and for gn we use the following parameterization: 
       

                          
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) −−−−−−

++++++

×

×+=

1n12,1n2,12n2

2n21n12n22,1n2,11n1n

XexpXexpXexp

hthtexpXexpXexpXexpg

ηηη

ηηη
                     (16) 

 
with 

( ) ( ) ( ) ( ) ( )( )2021012022,102,11010 hthtexpXexpXexpXexpg += ++++++ ηηη  
 

as an initial solution. 
Hereafter, ±±±

2,121 X,X,X ,h1,h2 are the generators of SL(3,C) algebra. 
Following the general scheme from [5]  we have at 
(0)-step: 
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The further calculation we deliver to Mathematica program: 
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At that point we stop the procedure, but it is obvious that it can easily be continued for any step and the resulting formulas 

correspond to those from [15].  
As it is seen from formulas (11-12) for algebras of the rank higher than two, the number of corresponding Backlund trans-

formations of the initial problem solutions  will be equal to the rank of the algebra.  Thus, it is necessary only to overcome the 
routine calculations using Mathematica 4-0 software.  
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