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One dimensional reduction of WZNW is integrated in the case of ),2((1 CSLA  algebra. 

 
1. The problem of constructing of the solutions of 

integrable models and its dimensional reductions, the one 
dimensional WZNW model in our case, in the explicit form 
remains important for the present time. The interest arises 
from the fact that almost all integrable models in one, two 
and (1+2)-dimensions are symmetry reductions of SDYM or 
they can be obtained from it by imposing the constraints on 
Yang-Mills potentials [1-13].  

This work is a direct continuation of [14-16], where the 
exact solutions have been derived by discrete symmetry 

transformation method that allows generating new solutions 
from the old ones in much more easier way than applying 
methods from [11]. The Lax pair presentation of the model 
under consideration is the first step in this program [16] that 
we hope will give us a key to construct solutions for an 
arbitrary semisimple algebra.  

2. The one dimensional reduction of self duality equations 
obtained in [11] is the equation for the element f , taking 
values in the semisimple algebra, 
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Here ±XH ,  are generators of ),2((

1
CSLA  algebra  
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embedded to gauge algebra in the half-integer way. 
The equation (1) has been reduced [16] to the following 

form: 
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Equation (2) is one-dimensional WZNW (Wess-Zumino-

Novikov-Witten) equation [17-19]. 
We’ll deal with the presentation of the equation under 

consideration in the form (1) and in the simplest case of 
f taking values in the algebra ),2((1 CSLA : 
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where generators ±XH ,  satisfy the same commutational 
relations (2). 

Then the equation (1) can be rewritten for the components 
of (4) as the system of three nonlinear one dimensional 
second order equations, the general solution of which has to 
be dependent on six constants. 

The system of equations has the form:  
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Consider the first equation of the system (5) representing 

it in a form: 
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Introducing new unknown function )12ln( ++′= xxu  

we have: 
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Making again the change of variables: τ+= 21 uu we 

simplify last equation: 
 

τ−=′+′′ 2
11

12 ueuu  
 

and after the substitution τ−= et  we come to one-
dimensional Liuville equation   
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Multiplying both sides of the last equation by 1u&   
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and integrating once, we have 
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where k  is a constant.  

The second integration gives the following: 
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where 2
1u

kew
−

= . 
Using all above introduced notation we have: 
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and using the relations 1ln −−τ− === Reet R  and 

uuu eRee 221 == τ+ , we eventually have the relation: 
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Taking into account the relation  
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we derive the solution of the first equation of the system 
under consideration:  

 
                        ( )ckRcthx ++−= −11                        (6)                           
 

Let’s rewrite the second equation of the system (5) in the 
form: 
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and introducing the same, as in first equation, variables 
( )1,ut , we have: 
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where  ckRr += −1 . 
 

From the general theory of linear equations it follows that the 
Wronskian of two solutions of the equation (7) is a constant, 
that is if 1y and 2y  are solutions of (7) then 
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If one knows one partial solution of (7), saying 1y , then 
second solution can be obtained via the following relation: 
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The equation (7) has the solution cthry =1 . Substituting it 
to (9) and making the corresponding integration, we come to 
the general solution of equation (7): 
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or in terms of original variables: 
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Consider the homogeneous part of the first equation of the 
system (5): 
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Rewriting it in a form 
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Here we used the expression for x  from (6). 

The first integration gives the equation: 
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the second one gives the required solution: 
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and the solution of the whole equation, whose 
inhomogeneous part is defined by the known solution y  of 
the second equation of the system, is given by the following 
expression: 
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As the solution of the system of three second order ordinary 
differential equations depends on six arbitrary constants, this  
solution is the general one. 

Comparison of the solutions obtained with that ones 
obtained by means of Riemann-Hilbert problem is the subject 
of further publications. 
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