RADIOGRAPHIC INVESTIGATIONS OF MELTS OF TIInC^{VI}₂ – InGaC^{VI} SYSTEMS

E.A. ALLAHYAROV

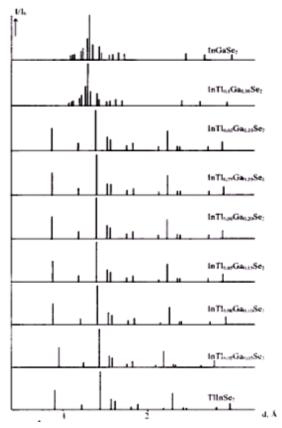
Azerbaijan Technical University, Baku Baku, 1025, H. Javid av., 25

In the paper the parameters of elementary cells of melts of $TlInC_2^{VI} - InGaC_2^{VI}$ (C-Se, Te) systems are defined by the radiographic investigations.

The carrying out of the corresponding analysis it is need for the obtaining of the necessary information about nature of chemical connections between atoms as the elementary compounds, so the complex phases. In the connection with this fact, the crystal-structure investigations are the one of the important question of crystal chemistry. These investigations create the experimental base of crystal chemistry.

As it is known, the complex of physical properties of solid bodies is defined by chemical composition and spatial location its constituent atoms. The character of electron interaction between them though is defined by the position of constituent atoms; however, the clear conception is created in the limits of the one and the same concrete crystal structure. Thus, the solution of the one of concrete problems of physics and chemistry of semiconductors mainly is defined by the accurate definition of concrete bonds of physical peculiarities of semiconductors with chemical composition, crystal structure and bond nature. However, nowadays, the investigations of new complex semiconductors are carried out one-sidedly, often limited by the revealing and studying of their physical properties. The necessary attention doesn't pay to the study of the construction of crystal lattice structure. In spite of the fundamental meaning of crystal structure, it has been deciphered widely enough only for few complex semiconductors.

The state diagrams of TlInC $_2^{VI}$ – InGaC $_2^{VI}$ systems have been constructed in [1,2] by the methods of differentiallythermal and microstructural analysis and it is revealed, that new compositions TlIn $_2$ GaC $_2^{VI}$ are created in these systems and wide solubility regions on the base of initial compounds are observed. However, the roentgen-phase analysis of these melts wasn't carried out.


In this connection in present paper the melts of the $TIInC_2^{VI} - InGaC_2^{VI}$ systems are treated by roentgen-graphic investigations.

The powder had been prepared previously for the obtaining of roentgenograms of each $InTl_{1-x}Ga_xC_2$ composition. The notations of electronic reflections were carried out on CuK_{α} , ($\lambda_{Cu_{\alpha}} = 1,54178E$), DRON-2 diffractometer of radiation with nickel filter at the similar modes. In the measurements of reflection angles the mistake didn't exceed the value $\theta=\pm 0,02^{\circ}$.

The bar-diagram of the melts of TIInSe₂-InGaSe₂ system is given on the fig.1. As it is seen from the figure the some tendency to the increase of the intensity of corresponding reflexes is observed in the solubility regions at the partial replacement of thallium atoms by Ga atoms in TIInSe₂ lattice.

The increase of the intensity of the lines in the given system probably is connected with the fact, that Ga atoms have the big tendency to hybrid bond sp^3 creation in contrast to thallium atoms that is caused to the decrease of metallic part of chemical connection between the composing atoms. In this case the shifting of maximum of electron density to the skeletons of Se atoms at the partial replacement of thallium atoms by Ga atoms in TIInSe₂, i.e. the possibility of fitting out of external electron membrane of Se atoms till the stable configuration s^2p^6 increases. In this connection the bond ionicity of chemical bond between the atoms of given melts increases.

The roentgenograms of $InTl_{0,5}Ga_{0,5}Se_2$ composition and solid solutions on its base significantly differ from the roentgenograms of initial compositions of TlInSe₂, InGaSe₂ and solid solutions on their base that proves the creation of the new quadrantal phase TlIn₂GaSe₄ in TlInSe₂-InGaSe₂ system.

Fig.1. The bar-diagram of the melts of TlInSe₂-InGaSe₂ system.

The indicating results of obtained roentgenograms showed, that the investigated melts of $InTl_{1-x}Ga_xC_2$ systems are crystallized in tetragonal syngony.

-	
FIZ	ΖΙΚΑ

_				-												
Se ₂	7.02 Å	θ	4	14°09′	15°02′	17°06	17018	18°15	19009	22°17′	23°16	26°10′	26°51'	29022	34°47′	48°49'
InTlo.75Ga0.25Se2	ι 1 2	á Å	3	3,151	2,970	2,621	2,590	2,460	2,348	2,032	1,950	1,747	1,706	1,571	1,351	1.024
ΠuT	a=7,	á, Å	2	3,149	2,970	2,621	2,590	2,460	2,348	2,032	1.949	1,747	1,706	1,571	1,351	1.024
5	.05Å	θ	4	14°06	14°57′	17°01	17016	18°12′	19006	22°12′	23°10′	26°03'	26°44'	29013	34°40'	48°42'
InTlosGa02Se2	ς = 2	ದ್ದೆ		3,160	2,985	2,633	2,597	2,467	2,355	2,039	1.959	1,755	1,713	1,579	1,355	1.026
Гщ Г	a=7,	á, Å	2	3,159	2,981	2,630	2,597	2,467	2,355	2,038	1.957	1,753	1,712	1,577	1,355	1.026
Se	7.07Å	θ	4	14°03′	14°55′	16°58′	17°10	$18^{0}06'$	19000	22°07′	23°06	25°58'	26°38′	29009	34°28'	48°23
InTlossGa015Se2	94, c=7	á, Å	e.	3,173	2,992	2,641	2,609	2,479	2,366	2,047	1.964	1,760	1,719	1,582	1,362	1.031
InI	$\alpha = 7$	á, Å	2	3,173	2,991	2,640	2,609	2,479	2,366	2,047	1.964	1,760	1,718	1,582	1,362	1.031
6	'.10Å	θ	4	14°00′	14°51'	16°49′	17°06	18°02′	18°56	22°01'	23°00′	25°51'	26°32′	29001	34°19′	48°08'
InTlooGa0.1Se2	ς= 2	d _a Å	3	3,185	3,004	2,651	2,619	2,488	2,375	2,055	1,972	1,767	1,725	1,589	1,367	1.035
Щ	$\alpha = 7$	d, Å	2	3,185	3,004	2,651	2,619	2,488	2,375	2,055	1,972	1,767	1,725	1,589	1,367	1.035
Se ₂	$= 7,97, c = 7.10 \text{ Å} \qquad a = 7,94, c = 7.07 \text{ Å} \qquad a = 7,90, c = 7.05 \text{ Å} \qquad a$	θ	4	13°55'	14°45′	16°49′	17°00′	17°55′	18°53'	21°56	22°55′	25°45'	26°25'	28°54′	34°10′	47°53'
InTl _{0.95} Ga _{0.05} Se ₂	.00 , <i>c</i> = 2	d, Å	3	3,202	3,024	2,662	2,636	2,505	2,381	2,063	1,979	1,774	1,732	1,595	1,372	1.039
[m]	a = 8	¥"p	2	3,198	3,016	2,661	2,629	2,498	2,384	2,062	1,980	1,774	1,732	1,595	1,372	1.039
	7.15 Å	θ	4	13°51	$14^{0}41'$	16°45′	17°00	17°55'	18°48'	21°52′	22°51'	25°36	26°21	28°49'	34°04	47°49'
TIInSe ₂	(02, c=)	d, Å	3	3,211	3,040	2,674	2,635	2,504	2,390	2,068	1,984	1,784	1,736	1,599	1,376	1.040
	$\alpha = 8$	a, A.	2	3,206	3,024	2,668	2,636	2,504	2,390	2,069	1.985	1,779	1,737	1,600	1,375	1.042
		ોમંત	1	211	112	202	221	301	311	312	123	303	313	214	530	371

Interfacial distances (on ${\breve A}),$ indexes on melt roentgen grams of $In\Pi_{1-x}Ga_xSe_2$ system

Table 1.1

_																				
Se ₂	6.85Å	θ	4	13°48'	15°28'	16°49	23°55′	25°00′	26°03'	26°44	28°30'	29002	30°39′	31°33′	32°15′	33°39'	34°14′	36°39'	37°28'	38°30'
InTlosGa0.58	,46 , <i>c</i> =	d _™ Å	3	3,230	2,889	2,662	1,900	1,823	1,755	1,713	1,615	1,588	1,513	1,473	1.444	1.391	1,370	1,292	1,267	1,238
[m]	a= 6,	$d_{_{\pm}} \tilde{A}$	2	3,230	2,889	2.662	1,900	1,823	1,755	1,713	1,615	1,588	1,513	1,473	1.444	1.391	1,370	1,292	1,267	1,238
Se	6.87 Å	θ	4	13°45'	15°25′	$16^{0}46'$	23°51'	24°56	25°58'	26°40'	28°24'	28°57′	30°32′	31°19′	32°08'	33°30'	34°07′	36°30'	37°19′	38°24′
InTI0.55Ga0.45Se2	18, 0= (d _™ Å	e.	3,240	2,898	2.670	1,906	1,828	1,760	1,717	1,620	1,592	1,517	1,477	1,449	1.396	1,374	1,296	1,271	1,241
InT	$\alpha = 6,4$	d, Å	7	3,240	2,898	2,670	1,906	1,828	1,760	1,718	1,620	1,592	1,517	1,478	1,449	1.396	1,374	1,296	1,271	1,242
		ોપ્રંત		200	210	211	222	302	312	8	400	322	204	214	420	332	8	200	510	215
çe.	6.94 Å	θ	4	14°21'	15°13′	17018	17032	18°30'	19024	22°34′	23°35'	26°31′	27°13'	29045	35°18'	49°40'	•	•	•	
InTl _{0.6} Ga _{0.4} Se ₂	78 , c=	d _m Å	e,	3,110	2,935	2.590	2,557	2,429	2,319	2,007	1,926	1,726	1,685	1,553	1,334	1.011				•
[m]	$\alpha = 7$	$d_{_{\pm}} \vec{A}$	2	3,110	2,935	2.589	2,557	2,429	2,319	2,007	1,926	1,726	1,685	1,553	1,334	1.011				•
35Se2	6.97 Å	θ	4	14°16	15°09′	17014	17°18'	18°24	19°18′	22°26	23°28'	26°23'	27°04	29036	35°04'	49021			•	•
InTl _{0.65} Ga _{0.35}	с= С	d _m Å	ŝ	3,126	2,948	2,601	2,570	2,441	2,331	2,017	1,935	1,734	1,693	1,560	1,341	1.016				,
InT	<i>a</i> = 7.82	$d_{_{\Lambda}} \vec{A}$	2	3,125	2,948	2,602	2,570	2,442	2,331	2,017	1,935	1,734	1,693	1,560	1.341	1.016				•
Še,	6.99 Å	θ	4	14°13′	15°06	17°10	17°22′	18°19′	19°14′	22°22′	23°22′	26°17′	26°58′	29°31′	34°55'	49°05'	•	•	•	
InTlo.7Ga0.3Se2	= ເ	d"Å	ŝ	3,137	2.958	2.611	2,580	2,451	2,339	2,024	1,942	1,740	1,699	1,564	1.346	1.020				•
InI	a=7.85	₹ [™]	2	3,137	2,958	2.610	2,580	2,451	2,339	2,024	1,941	1,740	1,699	1,564	1,346	1.020	•	•	,	•
		ોમત	-	211	112	202	221	301	311	312	123	303	313	214	530	371	•	•	,	•

	-
	si.
2	
	an A
1	٥
	ct)
F	-

Interfacial distances (on \mathring{a}), indexes on melt roentgen grams of $In\Pi_{1-x}Ga_xTe_2$ system

	2 Å	θ	4	11°38′	21°02	22°56	24°20	25°32′	27°02′	29051	33°02′	33°41'	38°22'	39°21'	42°50′	43°04	45°36	46°06	48°05	50°26	52°42′	57°36	59041	62°31'
$\Pi_{0.7} In Ga_{0.3} Te_2$	c = 7.1	$d_{_{m}} \overset{1}{A}$	ŝ	3,816	2,146	1,974	1,878	1,794	1,704	1,543	1,439	1,385	1,239	1,222	1,144	1,130	1,079	1,072	1,039	1,000	0,970	0,923	0,910	0,869
TI _{0.7} In(=8,31,	$d_{_{_{A}}}\dot{A}$	2	3,823	2,148	1,978	1,871	1,788	1,696	1,549	1,414	1,390	1,242	1,216	1,134	1,129	1,079	1,070	1,036	1,000	0,969	0,913	0,893	0,869
	ø	hkl	-	210	302	401	420	402	114	520	441	000	630	533	720	425	731	515	800	426	661	<u>%</u>	116 1,106 1,108 44°11' 536 0,855 0,859 64°22' 911 0,893 0,910 59°41'	931
	ł Å	θ	4	13°35′	18°52′	21°21'	24°04	26°56	29°24'	32°21'	33°31'	37°52'	38°31'	39°23'	40°48'	42°06	43°10′	45°56	46°06	47°48'	55°54'	62°16	64°22′	66 ⁰ 36
$\Pi_{0.8}$ InGa $_{0.2}$ Te ₂	<i>c</i> = 7.14	$d_{_{m}} \overset{d}{A}$	ñ	3,281	2,380	2,120	1,893	1,708	1,567	1,442	1,407	1,270	1,252	1,222	1,190	1,152	1,134	1,075	1,065	1,041	0,933	0,871	0,859	0.845
Tl _{0.8} In(= 8.38,	$a_{_{_{a}}}A$	2	3,283	2,385	2,118	1,890	1,702	1,570	1,441	1,396	1,256	1,238	1,215	1,180	1,150	1,127	1,073	1,070	1,040	0,931	0,871	0,855	0.840
	ğ	hkl	-	012	80	312	331	114	403	441	105	305	443	542	700	623	216	515	517	800	734	931	636	313
	2 Å	θ	4	13°49′	15°09′	$16^{0}21^{'}$	20°16	21°10′	21°45′	23°24	24°24′	25°24	26°37′	27°55'	30°25'	31°12′	32°19′	33°25'	34°18′	35°25'	48°12′	•		
TIIn2GaTe4	<i>c</i> = 7.22	d _m Å	ŝ	3,300	2,952	2,732	2,200	2,139	2,087	1,944	1,865	1,774	1,741	1,650	1,521	1,501	1,446	1,411	1,366	1,240	1,100		,	
$TIIn_2$ (=6.60,	$d_{_{\lambda}}\overset{d}{A}$	2	3,228	2,948	2,738	2,225	2,135	2,081	1,941	1,866	1,767	1,738	1,647	1,523	1,488	1,442	1,400	1,368	1,230	1,084			
	ä	hkl	-	200	210	211	300	310	113	203	213	321	104	400	331	402	421	105	422	502	000		,	
	5 Ă	θ	4	13°50′	15°37′	16°50	23°51'	24°53′	25°59'	26°52′	28°31'	29008	30°38'	31°32′	32°33′	33°44'	34°21	36°58'	37027	38°40'	$42^{0}11^{'}$	43°09′	$44^{0}11'$	50°58'
In ₂ GaSe4	<i>c</i> = 6.85	d _m Å	3	3,230	2,889	2,662	1,900	1,823	1,754	1,712	1,615	1,588	1,513	1,473	1,444	1,391	1,370	1,292	1,267	1,238	1,142	1,126	1,108	0.994
Tlln ₂ (·= 6,46,	$d_{_{a}}\dot{A}$	2	3,226	2,863	2,664	1,906	1,832	1,759	1,706	1,615	1,583	1,513	1,474	1,433	1,388	1,366	1,282	1,268	1,234	1,148	1,127	1,106	0.992
	a	hkl		200	210	211	222	302	312	80	400	322	204	214	420	332	<u>8</u>	500	510	215	440	441	116	425

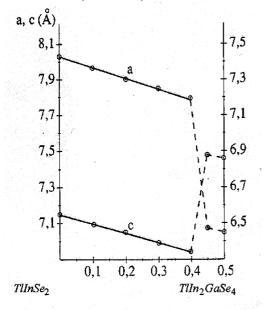

E.A. ALLAHYAROV

Table 2.2

_																								
	Ă	θ	4	21°02′	24°15′	26°13'	29041	32°22′	43°04	45°26	45°36	48°27	50°39'	52°42'	55027	62°08'	64°31	66°36	. 1	•	•	•	•	•
lossInGao45Te2	=7.22	$d_{_{\scriptscriptstyle M}} \mathring{A}$	3	2,140	1,881	1.741	1,558	1,444	1,131	1,087	1,075	1,032	1,002	0,974	0,935	0,871	0,859	0,826				•	•	
Tl _{0.55} In(a=6,61, c	$d_{_{_{a}}}$ Å	2	2,148	1,877	1.745	1,557	1,440	1,129	1,082	1,079	1,033	0,997	0,969	0,936	0,872	0,854	0,840			•	•	•	•
		hkl	-	113	302	104	330	005	206	611	540	405	603	217	710	553	526	800	1	1	•	•	•	•
	Å	θ	4	20036	22°39′	25°49'	26°49′	27°36	32°07′	36°11′	38°51	41°42′	43°21	50°10'	52°01'	53°45'	54°04'	55°32'	57°48'	60035	,80,08	•	•	•
0.45InGa0.55Te2	c = 7.11	$d_{_{m}}$ Å	3	2,187	2,002	1.761	1,680	1,666	1,442	1,303	1,228	1,162	1,120	0,999	0,970	0,958	0,946	0,931	0,909	0,882	0,828	•	•	•
Tl _{0.45} In(a=7.27	d, Å	2	2,179	2,006	1.770	1,709	1,664	1,450	1,306	1,229	1,159	1,123	1,004	0,978	0,956	0,952	0,935	0,911	0,885	0,825	•	•	•
		hkl	1	311	302	401	114	331	403	215	531	325	405	720	217	426	731	650	800	108	832	•	•	•
	Å	θ	4	19051	21°09′	22037	24°03′	26°21'	29044	33°42′	39°28'	41°22′	46°42′	48°13'	55°33'	60004	62°45'	66°44	68°24			•	•	•
l _{0.2} InGa _{0.8} Te ₂	c=7.10	d _" Å	3	2,269	2,100	2.055	1,890	1,708	1,550	1,397	1,203	1,163	1,069	1,032	0,930	0,883	0,868	0,839	0,827		•	•	•	•
Tl _{0.2} In(a=8.20 ,	d, Å	2	2,269	2,100	2.055	1,890	1,708	1,550	1,397	1,203	1,163	1,069	1,032	0;930	0,883	0,868	0,839	0,827		•	•	•	•
	2	hkl		103	312	400	322	332	403	522	631	405	505	326	625	427	626	932	941		•	•	•	•
	Ă	θ	4	19042'	23°09′	25°37′	29003	32°21′	36°44′	38°42'	39°28'	42°22′	44°42′	47°13′	49°33′	51°04′	54°45'	56°44'	61°24	63°33'	65°40'	•	•	•
10.6InGa0.4Te2	c=7.23	d _m Å	ŝ	2,290	1,965	1.780	1,586	1,450	1,288	1,230	1,209	1,143	1,095	1,053	1,009	1,004	0,938	0,917	0,876	0,861	0,843	•	•	•
Tl _{0.6} In(a=6,62 ,	$d_{_{_{A}}}\dot{A}$	2	2,287	1,961	1.783	1,588	1,441	1,289	1,233	1,213	1,144	1,096	1,051	1,013	0,991	0,944	0,922	0,878	0,861	0,846	•	•	•
		hkl		212	222	321	204	421	324	225	305	513	523	443	117	316	701	621	407	526	228	•	•	•

The results of roentgenographical investigation of the melts of $InTl_{1-x}Ga_xSe_2$ systems are given in table 1.

In fig.2 the dependence of lattice parameters of the melts $InTl_{1-x}Ga_xSe_2$ on composition is presented.

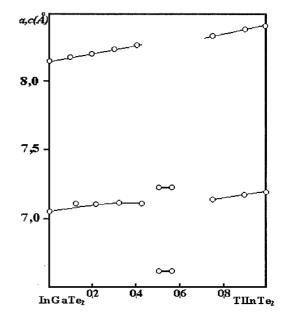


Fig.2. The dependence of parameters of elementary cells of the melts of $InTl_{1-x}Ga_xSe_2$ system on composition.

As it is followed from the fig.2 the parameters of elementary cells "a" and "c" orderly decrease at the partial replacement of thallium atoms by Ga atoms. The change of cell parameters is explained by the difference of interacting atom radiuses. The parameters of elementary cells of new phase $TIIn_2GaSe_4$ and solid solutions on its base significantly differ from lattice parameters of initial compounds and solid solutions on their base. This proves about the creation of new quadrantal phase in the given system. The change of lattice parameters in solubility regions takes place on the additivity law and essential inclinations from Vegard law doesn't observed in the investigated concentration interval.

As it was shown in [2] in TlInTe₂-InGaTe₂ system the big region of solubility is observed. That's why the lattice parameters of obtained solid solutions had been defined by us with the aim of the provement state diagram of this system. The experimental data, necessary for the definition of lattice parameters were based on difractograms. It is revealed the lattice parameters decrease to the side of InGaTe₂ compound in region 55-100 mol.% InGaTe₂. Such order change of lattice parameters is typically through the solubility region. Exactly, lattice parameters are increased from InGaTe₂ and TlInTe₂ compounds (fig.3).

The lattice parameters in region 52-70 mol.% $InGaTe_2$ strongly differ from the regions 0-20 mol.% $InGaTe_2$ and 55-100 mol.% $InGaTe_2$. Probably, in this region the solid solutions are created on the base of new phase. The decrease of parameter lattice on additivity law is the reason of the replacement of thallium atoms by small Ga atoms in the plane of structure base.

Fig.3. The dependence of lattice parameters on the composition of melts of $InTl_{1-x}Ga_xTe_2$ system.

The results of roentgenogaphic investigations of the melts $TIInTe_2$ -InGaTe₂ are given in the table 2.

As we already mentioned, the melts $InGaTe_2$ with $TIInTe_2$ also as compounds $InGaTe_2$ and $TIInTe_2$ are crystallized in tetragonal lattice. That's why the superstructure lines don't appear on diffactograms in solubility region. The absence of superstructure lines proves that all investigated melts of solid solutions in order and disorder states also as compounds $InGaTe_2$ and $TIInTe_2$ crystallize in the same syngony.

The lines, character for the TlGaTe₂ compound appear in solubility region on the base of TlInTe₂ (0-20 mol.%) TlGaTe₂ and continue to appear till the melt $Tl_{0,7}InGa_{0,3}Te_2$. The additional lines for the melts, consisting 60,55,50 mol/% TlInTe₂ appear in solubility region on the base of new phase. These results give us the foundation to prove in the rightness of state diagram of TlInTe₂-InGaTe₂ system.

The new compounds $TlIn_2GaSe_4$ (Te₄) revealed in $TlInTe_2$ -InGaTe₂ systems are carried out by roentgen phase investigations.

The experimental necessary material for the calculation of $TIIn_2GaSe_4$ and $TIIn_2GaTe_4$ lattice parameters was consist from crystallograms also. On the base of the carried out investigation it is revealed that these phases crystallize in tetragonal syngony and have the following periods of elementary cells a=6,46Å; c=6,85Å correspondingly.

Thus, compounds $TlIn_2GaSe_4$ and $TlIn_2GaTe_4$ crystallize in tetragonal syngony as well as initial ones. But lattice parameters significantly differ from the parameters of double and triple analogues of TlSe. Probably, this is connected with the new reconstruction of component atoms.

[1] E.M. Godjaev, Sh.M. Guseynov, M.M. Dadashev. Diagramma sostoyaniya sistemi TlInSe₂-InGaSe₂. Fizicheskaya ximiya, 1974, t.48, №10, s.2615-2618.

^[2] E.M. Godjaev, M.G. Gamidov. Fiziko-khimicheskie i rentgenograficheskie issledovaniya sistemi TlInTe₂-InGaTe₂. Fizicheskaya ximiya, 1975, t.49, №9, s.2458-2460.

E.Ə. Allahyarov

$TIInC_2^{VI} - InGaC_2^{VI} \ \ \partial Rintil \partial R \ sisteminin \ Rentgenoq Rafik \ t \partial Dqiqi$

Rentgenoqrafik tədqiqatlar yolu ilə $TlInC_2^{VI} - InGaC_2^{VI}$ ərintilər sisteminin elementar özəklərinin parametrləri təyin olunmuşdur.

Э.А. Аллахяров

РЕНТГЕНОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ СПЛАВОВ СИСТЕМ $TlInC_2^{vi}$ – $InGaC_2^{vi}$

Рентгенографическими исследованиями определены параметры элементарных ячеек сплавов систем $TlInC_2^{VI}$ – $InGaC_2^{VI}$.

Received: 14.06.06