ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ СИСТЕМЫ Sb₂Te₃-Bi₂Te₃-Gd₂Te₃ И ТРОЙНОГО СОЕДИНЕНИЯ GdSbTe₃

Р.А. ИСМАЙЫЛОВА, И.Б. БАХТИЯРЛЫ, Б.Ш. БАРХАЛОВ, М.М. ТАГИЕВ, Р.Ю. АЛИЕВ

Институт Физики НАН Азербайджана AZ-1143, Баку, пр. Г. Джавида, 33

Hа основе Sb_2Te_3 , Bi_2Te_3 и Gd_2Te_3 синтезированы твердые растворы $(Sb_2Te_3)_{0,74}(Bi_2Te_3)_{0,24}(Gd_2Te_3)_{0,02}$, $(Sb_2Te_3)_{0,74}(Bi_2Te_3)_{0,26}(Gd_2Te_3)_{0,02}$, $(Sb_2Te_3)_{0,74}(Bi_2Te_3)_{0,26}(Gd_2Te_3)_{0,02}$, $(Sb_2Te_3)_{0,74}(Bi_2Te_3)_{0,26}(Gd_2Te_3)_{0,06}$ и тройное соединение $GdSbTe_3$, исследованы их термоэлектрические параметры и выяснены особенности механизма переноса электрического заряда в этих материалах.

On the basis of Sb_2Te_3 , Bi_2Te_3 and Gd_2Te_3 binary compounds $(Sb_2Te_3)_{0,74}(Bi_2Te_3)_{0,24}(Gd_2Te_3)_{0,02}$, $(Sb_2Te_3)_{0,72}(Bi_2Te_3)_{0,26}(Gd_2Te_3)_{0,02}$, $(Sb_2Te_3)_{0,74}(Bi_2Te_3)_{0,26}(Gd_2Te_3)_{0,06}$ solid solutions and $GdSbTe_3$ compound have been synthesized, their thermoelectric parameters have been investigated and features of the charge transport mechanism in these materials have been revealed.

ВВЕДЕНИЕ

Соединения $A_2^V B_3^{VI}$ и твердые растворы на их основе широко используются в качестве материалов для n - и p-ветвей термоэлектрических преобразователей энергии, в частности, электронных твердотельных охладителей, работающих в интервале температур 200-350К [1,2]. С целью выяснения возможности расширения области работы термоэлектрических преобразователей, их рабочих температур, механической прочности, улучшения электрофизических параметров, исследование тройной системы $\mathrm{Sb}_2\mathrm{Te}_3$ - GdTe_3 - $\mathrm{Bi}_2\mathrm{Te}_3$ представляет определенный научный и практический интерес.

В настоящем сообщении приводятся результаты исследований в широком интервале температур 80-300К термоэлектрических свойств — удельной электропроводимости (σ), коэффициентов термо-э.д.с. (α), теплопроводности (χ) и Холла (R_{χ}) полученных нами твердых растворов:

 $(Sb_2Te_3)_{0,74}(Bi_2Te_3)_{0,24}(Gd_2Te_3)_{0,02}, \\ (Sb_2Te_3)_{0,72}(Bi_2Te_3)_{0,26}(Gd_2Te_3)_{0,02}, \\ (Sb_2Te_3)_{0,74}(Bi_2Te_3)_{0,20}(Gd_2Te_3)_{0,06} \\ \text{и тройного соединения GdSbTe}_3 \, .$

МЕТОДИКА ЭКСПЕРИМЕНТА

Для получения образцов твердых растворов системы Sb_2Te_3 - Bi_2Te_3 - Gd_2Te_3 на первом этапе работ путем совместного сплавления исходных компонентов (теллур марки "TB-3",висмут-"Ви-0000",сурьма-"Су-0000", гадолиний - "Год M-0") были синтезированы бинарные соединения Sb_2Te_3 , Bi_2Te_3 и Gd_2Te_3 .

Синтез твердых растворов, полученных на основе $\mathrm{Sb_2Te_3}$, $\mathrm{Bi_2Te_3}$ и $\mathrm{Gd_2Te_3}$, проводился прямым сплавлением, взятых в расчетных соотношениях бинарных компонентов, в откачанных до давления $\sim\!0.01$ Па и запаянных при температуре 1375К ампулах. Температура в объеме печи повышалась со скоростью 100 К/ч, при достижении температуры 1375К рост температуры прекращался и ампула выдерживалась в тепловом поле в течение 2,5 ч, при непрерывном перемешивании вещества. Далее, для приведения образцов в равновесное состояние проводился их отжиг при температуре 600К в течении 50 часов.

Образцы для измерений в виде параллелепипеда с размерами $\sim 3x4x10$ мм вырезались на электроискровой

установке. Для удаления, полученного после резки нарушенного поверхностного слоя, поверхности образцов обрабатывались электрохимическим методом в растворе ${\rm KOH+C_6H_6O_6+H_2O}$ при комнатной температуре. Длительность электрохимического травления была равна 20-25с, плотность тока через образец составляла $0,5~{\rm A/cm}^2$.

Электрические контакты наносились сплавом состава (масс. %): 57Bi+43Sn с использованием флюса $ZnCl_2+NH_4Cl+NiCl_2+H_2O$.

Образцы тройного соединения $GdSbTe_3$ были получены синтезированием в вакуумированных до $\sim 0,01$ Па кварцевых ампулах компонентов, взятых в соотношении 1:1. Данное соединение образуется по перитектической реакции $M+Gd_2Te_3 \rightarrow GdSbTe_3$. Перитектическая температура составляет 980 К.

Рентгенофазный анализ показал, что соединение GdSbTe₃ кристаллизуется в гексагональной сингонии и постоянные решетки равны a=4,16~Å, b=30,24~Å, пространственная группа - R $\overline{3}$ m.

Электропроводность и термо-э.д.с. $GdSbTe_3$ исследовались в интервале температур $300\div900K$. на образцах цилиндрической формы длиной l=8-10 мм и диаметром d=4-6 мм.

Коэффициенты электропроводности (σ), термо-э.д.с. (α) и Холла (R_x) измерялись двухзондовым методом на постоянном токе, а коэффициент теплопроводности (χ) – абсолютным стационарным методом.

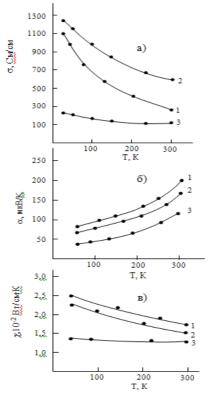
ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты исследования σ , α , χ и R_x в интервале температур 80-300 К для твердых растворов составов: $(\mathrm{Sb_2Te_3})_{0,74}(\mathrm{Bi_2Te_3})_{0,24}(\mathrm{Gd_2Te_3})_{0,02}(1)$,

 $(Sb_2Te_3)_{0,72}(Bi_2Te_3)_{0,26}(Gd_2Te_3)_{0,02}(2),$

 $(Sb_2Te_3)_{0,74}(Bi_2Te_3)_{0,20}(Gd_2Te_3)_{0,06}$

представлены на рис. 1.


Из рисунка видно, что для всех трех составов удельная электропроводность образцов с уменьшением температуры растет (рис. 1,*a*) и температурная зависимость электропроводности носит металлический характер. Такой вид температурной зависимости электропроводности характерен для частично вырожденных полупроводников, где участвуют два механизма рассеяния носителей заряда: на заряженных примесях и тепловых колебаниях

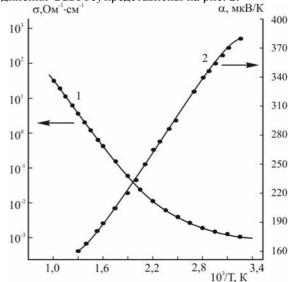
<u>ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ СИСТЕМЫ Sb₂Te₃-Bi₂Te₃-Gd₂Te₃ ...</u>

решетки.

Температурные зависимости коэффициентов термоэ.д.с. для образцов всех составов носят одинаковый характер—с уменьшением температуры их значения уменьшаются (рис. $1, \delta$). По знаку термо-э.д.с. ясно, что все три образца обладают p-типом проводимости.

Коэффициенты теплопроводности χ с уменьшением температуры растут (рис.1, ϵ).

Рис.1. Температурная зависимость коэффициента удельной электропроводности (σ), термо-э.д.с. (α) и теплопроводности (χ):


- 1 $(Sb_2Te_3)_{0,74}(Bi_2Te_3)_{0,24}(Gd_2Te_3)_{0,02}$;
- $2 (Sb_2Te_3)_{0.72}(Bi_2Te_3)_{0.26}(Gd_2Te_3)_{0.02};$
- $3 (Sb_2Te_3)_{0,74}(Bi_2Te_3)_{0,20}(Gd_2Te_3)_{0,06}$

Значения коэффициента Холла для образцов 1 и 3 очень близки, и составляют соответственно 0,23 и 0,25 см³/Кл, а для образца 2 он значительно больше и равен 2,58 см³/Кл. Концентрация и подвижность дырок при комнатной температуре, вычисленные из коэффициента Холла составляет, соответственно 2,7· 10^{19} см $^{-3}$ и ~ 61 см 2 /В·с для образца 1; 2,4· 10^{18} см $^{-3}$, ~ 1580 см 2 /В·с для образца 2 и 2,5· 10^{19} см $^{-3}$ и ~ 32 см 2 /В·с для образца 3.

При комнатной температуре термоэлектрическая эффективность, вычисленная из выражения $Z=(\alpha^2\sigma)/\chi$ составляет $0.68\cdot 10^{-3}~\mathrm{K}^{-1}$ для образца 1; $1.28\cdot 10^{-3}~\mathrm{K}^{-1}$ для образца 2 и $0.20\cdot 10^{-3}~\mathrm{K}^{-1}$ для образца 3.

Результаты исследований термоэлектрических характеристик синтезированных твердых растворов показали, что из них для работы при температурах выше 300К как термоэлектрический материал наиболее эффективен состав $(Sb_2Te_3)_{0.72}(Bi_2Te_3)_{0.26}(Gd_2Te_3)_{0.02}$.

Результаты исследований термоэлектрических параметров σ и α синтезированного нами нового тройного соединения GdSbTe₃ представлены на рис. 2.

*Рис.*2. Температурная зависимость коэффициентов удельной электропроводности (σ) (1) и термоэ.д.с.(α) (2) тройного соединения GdSbTe₃

Из рис. 2 видно, что значение удельной электропроводности (σ) для тройного соединении GdSbTe₃ с ростом температуры в интервале температур 300-900 К растет. В области температур T< (400-450) К удельная электропроводность меняется сравнительно слабо, что соотвеетствует области примесной проводимости. В области температур T > 450К удельная электропроводность от температуры зависит резко, что соответствует области собственной проводимости. При низких температурах (в области примесной проводимости) энергия активации проводимости составляет $\Delta E_n = 0.21$ эВ. В области высоких температур (в области собственной проводимости) для ширины запрещенной зоны соединения GdSbTe₃ получено значение $\Delta E = 1.8$ эВ.

Значение коэффициента термо-э.д.с. (рис.2, δ) для исследуемого соединения GdSbTe₃ в интервале температур 300-900К с ростом температуры уменьшается. По знаку термо-э.д.с. установлено, что в области исследованных температур соединение GdSbTe₃ обладает p-типом проводимости. Видно, что для соединения GdSbTe₃ наблюдается характерная для полупроводников температурная зависимость электропроводности и термо-э.д.с.

пользующие распределенный эффект Пельтье. Санкт-Петербург, 2004, с.422-427

^{[1].}Л.И. Анатычук. Термоэлементы и термоэлектрические устройства. Киев, Наук. думка, 1979, 768 с.

^{[2].}Л.И. Иванова, М.А. Коржуев и др. Низкотемпературные термоэлектрические микрохолодильники, ис-