МАГНЕТОДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ГОМОГЕННЫХ ФАЗ В ПОЛУПРОВОДНИКОВЫХ КРИСТАЛЛАХ (TIInS₂)_x(TIMnS₂)_{1-x} И (TIGaSe₂)_x(TIMnSe₂)_{1-x}

Р.Г. ВЕЛИЕВ, Г.Ю. СЕИДОВ, Р.З. САДЫХОВ, Ф.М. СЕИДОВ, Э.М. КЕРИМОВА, А.И. ДЖАББАРОВ

Институт Физики Национальной Академии Наук Азербайджана AZ-1143, Баку, пр. Г. Джавида, 33

В интервале температур 80÷300К исследованы диэлектрические свойства TIInS₂,TIGaSe₂, а также магнитные и электрические свойства TIInS₂,TIGaSe₂ а также магнитные и электрические свойства также магнитные и электрические свойства также магнитные и электрические свойства TIInS₂,TIGaSe₂ авляются сегнетоэлектриками, а TIMnS₂, TIMnSe₂ антиферромагнетиками-полупроводниками. Изучено взаимодействие в квазибинарных системах TIInS₂-TIMnS₂ и TIGaSe₂. TIMnSe₂. Предположено сосуществование магнитного и полярного упорядочений в кристаллах (TIInS₂)_x(TIMnS₂)_{1-x} и (TIGaSe₂)_x(TIMnSe₂)_{1-x}.

In the temperature range 80÷300K the dielectric properties of TIInS₂,TIGaSe₂ and magnetic and electric properties TIMnS₂,TIMnSe₂ have been investigated. The experimental results showed, that TIInS₂,TIGaSe₂ are ferroelectrics, TIMnS₂, TIMnSe₂ are antiferromagnetic – semiconductors. The interaction in the quasi-binary systems TIInS₂-TIMnS₂ and TIGaSe₂-TIMnSe₂ has been studied. The co-existence of polar and magnetic orderings in the crystals of (TIInS₂)_{1-x} and (TIGaSe₂)_x(TIMnSe₂)_{1-x} is proposed.

введение

Тройные дисульфиды Tl(In,Cr,Mn, Fe, Co)S₂ и диселениды Tl(Ga,Cr,Mn,Fe,Co)Se₂ представляют собой обширный класс сильноанизотропных (слоистых, цепочечных) соединений с физическими свойствами, охватывающими весьма, широкий диапазон исследований в современной физике твердого тела. В частности, среди них имеются сегнетоэлектрики-полупроводники (TlInS₂,TlGaSe₂) [1-4], ферромагнетики [5-7], ферримагнетики [8], антиферромагнетики-полупроводники (TlFeS₂, TlFeSe₂, TlMnS₂, TlMnSe₂) [9-12], разупорядоченные структуры (несоизмеримость в TlInS₂, TlGaSe₂) [1-4,13], низкоразмерные магнитные структуры (TlCrS₂, TlCrSe₂, TlFeSe₂,TlFeSe₂) [6,7,9] и.т.д.

В зависимости от температуры, магнитного и электрического полей, гидростатического давления или степени дефектности, каждое из отмеченных соединений может находиться в различных фазовых состояниях и переходить из одного фазового состояния в другое [6,7,9,14-17], так как их структурные особенности, прежде всего низкосимметричность кристаллической решетки, предполагают такие превращения.

Однако, наиболее интересным и важным с научной точки зрения является возможность целенаправленного варьирования фактического химического состава вышеуказанных соединений с целью получения в одном кристалле состояния сосуществования магнитного и полярного (дипольного) упорядочений (магнетоэлектрики), ибо еще исторически сложилось так, что вся существующая на сегодняшний день, совокупность механизмов полярного (дипольного) упорядочения (например: сегнетоэлектрики, антисегнетоэлектрики, несобственные сегнетоэлектрики, собственные и несобственные сегнетоэлектрики с промежуточной несоизмеримой фазой, сегнетоэлектрики) была спрогнозирована, а затем нашла свое воплощение в конкретных кристаллах, на основе аналогии явления с механизмами магнитного (спинового) упорядочения в магнетиках.

СИНТЕЗ И ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДИКИ ИССЛЕДОВАНИЯ ПОЛУЧЕННЫХ КРИСТАЛЛОВ

Для исследования температурной зависимости диэлектрической проницаемости – $\varepsilon(T)$ слоистых кристаллов TlInS₂, TlGaSe₂ были использованы образцы в форме пластин полярного среза, вырезанные из монокристаллических слитков обоих соединений. Монокристаллические слитки TlInS₂, TlGaSe₂ были выращены методом Бриджмена-Стокбаргера, при этом скорость передвижения фронта кристаллизации составляла 2 мм в час. $\varepsilon(T)$ TlInS₂ и TlGaSe₂ измерялась с помощью моста переменного тока на частоте 1 кГц. В качестве электродов применялась серебряная паста.

Кристаллы TlMnS₂, TlMnSe₂ были синтезированы твердофазным методом, в эвакуированных до остаточного давления ~10⁻³Па в кварцевых ампулах, при температуре ~1100К из химических элементов, взвешенных в стехиометрическом соотношении. Для предотвращения взрыва ампул температура электропечи повышалась до температуры плавления серы (391К), селена (493К) и поддерживалась в течение трех часов. После этого температура печи повышалась со скоростью100К/час до температуры ~1100К, при которой ампулы выдерживались в течение 120 часов. Затем продукт реакции измельчался и синтез повторялся. После чего TlMnS₂, TlMnSe₂ приводились в порошкообразное состояние, спрессовывались и, в эвакуированных кварцевых ампулах, подвергались гомогенизирующему отжигу при температуре ~600К, в течение 480 часов.

Рентгенографический анализ образцов TlMnS₂ и TlMnSe₂, специально подготовленных после отжига, проводился при комнатной температуре (~300K) на дифрактометре ДРОН -3M (CuK_a- излучение; λ =1,5418 Å; Ni-фильтр; режим-35кB, 10 мА). Угловое разрешение съемки составляло ~0,1°. Использовался режим непрерывного сканирования. Углы дифракции определены методом измерений по максимуму интенсивности. В экспериментах ошибка определения углов отражений не превышала $\Delta \theta$ =±0,2°.

Рис.1. Дифрактограммы кристаллов TlMnS₂(a), TlMnSe₂(b).

На рис.1 представлены дифрактограммы кристаллов $TlMnS_2$ (a) и $TlMnSe_2$ (b).

В интервале углов $10^{\circ} \le 2\theta \ge 70^{\circ}$ были зафиксированы дифракционные отражения от образцов TlMnS₂ и TlMnSe₂, которые индицируются на основе тетрагональной (TlMnS₂) и гексагональной (TlMnSe₂) сингоний, с параметрами кристаллической решетки: $\alpha = 7,74$ Å; c=30,60 Å, z=20; $\rho_x = 6,40$ г/см³ и $\alpha = 6,53$ Å; c=23,96 Å; z=8; $\rho_x = 6,71$ г/см³, соответственно.

Температурная зависимость обратной парамагнитной восприимчивости - χ^{-1} (T) соединений TlMnS₂, TlMnSe₂ исследовалась методом Фарадея на магнитоэлектрических весах. Образцы для измерений имели цилиндрическую форму с размерами: h \approx 3мм; d \approx 2,5мм.

Температурная зависимость электропроводности $\sigma(T)$ TlMnS₂, TlMnS₂, uccледовалась компенсационным методом. Образцы для измерений имели форму параллелепипеда с размерами 4,20мм x5,84 мм x 1,37 мм (TlMnS₂) и 12,47 мм x 5,65 мм x 2,87 мм (TlMnS₂). Омические контакты создавали путем электролитического осаждения меди на торцах образцов.

Исследования проводились в температурном интервале 80÷300К в квазистатическом режиме, при этом скорость изменения температуры составляла 0,2К/мин. Во время измерений образцы находились внутри азотного криостата и в качестве датчика температуры применялась дифференциальная медь-константановая термопара, спай который стационарно закреплялся на кристаллодержателе вблизи образца. Опорный спай термопары стабилизировался при температуре тающего льда.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис.2. приведена температурная зависимость диэлектрической проницаемости $TllnS_2$, измеренная при атмосферном давлении. Как видно из рисунка, кривая \mathcal{E} (T) характеризуется рядом аномалий в виде максимумов при ~206,3К и ~202,4К, а также наличием небольшого "перегиба" в окрестности 201К. Как известно, слоистый кристалл TlInS₂ с понижением температуры при атмосферном давлении испытывает сложную последовательность структурных фазовых переходов (ФП), включая ФП в несоизмеримую (HC) и соизмеримую (C) сегнетоэлектрическую фазы [1-4]. Исходная параэлектрическая фаза TlInS₂ характеризуется пространственной группой симметрии (ПГС) C_{2h}^6 . ФП в НС-фазу связан с конденсацией (при $T_i \approx 216K$) мягкой моды в точке бриллюэновской зоны с волновым вектором $K_i = (\delta; \delta; 0, 25)$, где б-параметр несоизмеримости [13]. При Т_с ≈ 201К величина б скачком обращается в нуль и кристалл TlInS₂ переходит в несобственную сегнетоэлектрическую (вектор спонтанной поляризации расположен в плоскости слоя) С-фазу с волновым вектором

Рис.2. Температурная зависимость диэлектрической проницаемости TlİnS₂.

Сопоставляя наши результаты с данными, представленными в [1-4,17] можно заключить, что кривая $\mathcal{E}(T)$ исследуемого кристалла резко отличается от аналогич-

ных кривых, представленных в литературе, как числом аномалий, так и их температурным положениям. Отметим также, что цвет исследуемого образца TlInS₂, отличался оранжевым оттенком, тогда как кристаллы $TlInS_{2},$ выбранные из разных партий и исследуемые в [1-4] по цветовой гамме обладали различными оттенками желтого цвета. Опираясь на данные [15-16], в которых установлена сильная чувствительность физических свойств (в том числе и температур $\Phi\Pi$) слоистого кристалла TlInS₂ к количеству примесей в образце и к степени дефектности его кристаллической структуры, можно предположить, что наблюдаемая нами на кривой $\mathcal{E}(T)$ аномалия при ~206,3К связана с ФП в НС-фазу, а при ~202,4 - с ФП в соразмерную сегнетоэлектрическую фазу. При этом "перегиб" в окрестности 201К представляет собой температурный интервал сосуществования остатков не распавшихся солитонов НС-фазы и доменов низкотемпературной С-фазы [1].

Рис.3. Температурная зависимость диэлектрической проницаемости TIGaSe₂.

На рис.3 приведена температурная зависимость диэлектрической проницаемости - \mathcal{E} (T) TlGaSe₂, измеренная при атмосферном давлении. Как видно из рисунка, ход зависимости \mathcal{E} (T) TlGaSe₂ характеризуется аномалиями в виде максимумов, связанных с точками фазового перехода в несоразмерную фазу при T_i ≈ 117,2K и соразмерную сегнетоэлектрическую фазу при T_c ≈ 114K. В обоих кристаллах температурный ход \mathcal{E} в параэлектрической и сегнетоэлектрической фазах хорошо аппроксимируется законом Кюри-Вейса с величиной константы Кюри~10³K. Отметим, что температурное положение аномалий на кривой \mathcal{E} (T), а также величина константы Кюри TlGaSe₂ удовлетворительно согласуется с [3,18-20].

Температурная зависимость обратной парамагнитной восприимчивости - $\chi^{-1}(T)$ соединений TlMnS₂ и TlMnSe₂ представлена на рис.4. Как видно из рисунка, зависимость $\chi^{-1}(T)$ для обоих соединений имеет вид характерный для антиферромагнитного упорядочения спиновой системы.

На рис.5,6 приведена температурная зависимость электропроводности - σ (T) антиферромагнетиков

 $TlMnS_2$ и $TlMnSe_2$. Как видно из рисунков кривая зависимости σ (T) для обоих соединений имеет полупроводниковый характер.

Рис.4. Температурная зависимость обратной парамагнитной восприимчивости TlMnS₂(a), TlMnSe₂(b).

Puc.5. Температурная зависимость электропроводимости TlMnS₂.

Рис.6. Температурная зависимость электропроводности TlMnSe₂.

МАГНЕТОДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ГОМОГЕННЫХ ФАЗ В ПОЛУПРОВОДНИКОВЫХ.....

Для решения поставленной в начале статьи физической задачи необходимо определить интервалы растворимости в сегнетоэлектриках TlInS₂, TlGaSe₂ вышеперечисленных во введении магнетиков. Методом дифференциально-термического анализа (ДТА) были исследованы, прежде всего, политермические сечения TlInS₂-TlMnS₂ и TlGaSe₂-TlMnSe₂. Исходные гомогенные фазы TlInS₂, TlGaSe₂ и TlMnS₂, TlMnSe₂ были синтезированы ранее для исследования соответственно их диэлектрических и магнитных свойств.

С целью построения диаграммы состояния системы TlInS₂-TlMnS₂ было приготовлено 14 составов. Режим синтеза составов, взвешенных в эквимолекулярном соотношении на основе исходных тройных соединений, предварительно приведенных в мелкодисперсное состояние, выбирали, ориентируясь на температуры плавления TlInS₂(1050К) и TlMnS₂(1280К). Каждый состав помещался в кварцевую ампулу, которая эвакуировалась до остаточного давления ~10-3Па. После чего ампулу с составом нагревали в электропечи выше температуры плавления исходных соединений и выдерживали при этой температуре в течение 9-11 часов, затем температуру печи понижали со скоростью ~100К/час до комнатной температуры (~300К). Синтезированные сплавы для гомогенизации отжигали в течении 24 суток при ~700К в случае сплавов богатых TlInS2, и в течении 27 суток при ~850К в случае сплавов богатых TlMnS2. После отжига сплавы исследовали методом ДТА на установке НТР-64, позволяющей фиксировать температуру фазовых превращений с точностью ±10К. Скорость нагревания составляла 2-4К/мин. Температуру контролировали Рt-Pt/Rh термопарой, проградуированной по реперным веществам в интервале 430÷1560К.

Построенная по результатам дифференциальнотермического анализа диаграмма состояния системы $TlInS_2$ -TlMnS₂ представлена на рис.7. Эта система является квазибинарной эвтектического типа с ограниченной областью твердого раствора на основе $TlMnS_2$, доходящим до 8мол.% $TlInS_2$ при комнатной температуре.

Рис.7. Диаграмма состояния системы TlInS₂-TlMnS₂.

С целью построения диаграммы состояния системы TlGaSe₂-TlMnSe₂ было приготовлено 15 составов. Режим синтеза составов, взвешенных в эквимолекулярном соотношении на основе исходных тройных соединений, предварительно приведенных в мелкодисперсное состояние, выбирали, ориентируясь на температуры плавления TlGaSe₂(1080К) и TlMnSe₂(1110К). Кварцевые ампулы с составами эвакуировались до остаточного давления ~10-3 Па и поочередно помещались в электропечь, после чего каждый состав нагревали выше температуры плавления исходных соединений и выдерживали при этой температуре в течение 6-8 часов. Затем температуру в печи понижали со скоростью ~100К/час до комнатной температуры (~300К). Синтезированные сплавы для гомогенизации отжигали в течении 19 суток при ~720К в случае сплавов, богатых TlGaSe₂ и в течении 17 суток при 740К в случае сплавов, богатых TlMnSe₂.

Рис.8 Диаграмма состояния системы TlGaSe₂-TlMnSe₂.

Построенная по результатам дифференциальнотермического анализа диаграмма состояния системы TlGaSe₂-TlMnSe₂ представлена на рис 8. Эта система является квазибинарной эвтектического типа. Нонвариантная эвтектическая точка отвечает составу (TlGaSe₂)_{0,64}(TlMnSe₂)_{0,36} и температуре 920К. На основе TlGaSe₂ образуется твердый раствор до 14 мол.%, а на основе TlMnSe₂ образуется твердый раствор до 12 мол.% TlGaSe₂ при~300К.

ЗАКЛЮЧЕНИЕ

Таким образом, основываясь на проведенных исслеутверждать, дованиях можно что В кристаллах $(TlInS_2)_x(TlMnS_2)_{1-x}$ и $(TlGaSe_2)_x(TlMnSe_2)_{1-x}$ возможно сосуществование полярного и магнитного упорядочений, т.е. возможно изменение диэлектрической и магнитной проницаемостей гомогенных фаз в зависимости от приложенных электрических И магнитных полей.

Р.Г.ВЕЛИЕВ, Г.Ю.СЕИДОВ, Р.З.САДЫХОВ, Ф.М.СЕИДОВ, Э.М.КЕРИМОВА, А.И.ДЖАББАРОВ

- [1]. F.M.Salayev, K.R. Allahverdiev, F.A. Mikailov. J.Ferroelectrici, 1992, 131, 1-4, 163
- [2]. R.A. Suleymanov, M.Yu.Seidov, F.M. Salayev, F.A. Mikailov. FTT, 1993, 35, 2, 348 (in Russian)
- [3]. K.R.Allahverdiev, N.D. Akhmed-zade, T.G.Mamedov, T.S.Mamedov, M.Yu. Seidov. FNT,2000,26,1,76 (in Russian)
- [4]. F.A.Mikailov, T.Basaran, T.G.Mamedov, M.Yu.Seyidov, E. Senturk, J.Phizika B, 2003, 334, 1-2, 13
- [5]. *M.Rosenberg, A.Knulle,H.Sabrowsky*. C.Platte. J.Phys. Chem.Solids,1982,43,2,87
- [6]. *M.A.Aljanov,A.A.Abdurragimov,S.G.Sultanova*,M.D.Na djafzade.FTT,2007,49,2,309 (in Russian)
- [7]. *M.Aljanov, M.Nadjafzade, Z.Seidov, M.Gasumov*. Turkish Journal of Physics, 1996, 20, 9, 1071
- [8]. *R.Z.Sadikhov,E.M.Kerimova,Yu.G.Asadov, R.K.Veliyev.* FTT,2000,42,8,1449 (in Russian)
- [9]. Z.Seidov, H.Krug von Nidda, J.Hemberger, A.Loidl, G.Sultanov, E.Kerimova, A.Panfilov. J.Phys.Rev. B, 2001,65,014433
- [10]. S.N.Mustafayeva, E.M.Kerimova, A.I.Jabbarli. FTT, 2000,42,12,2132 (in Russian)
- [11]. R.Z.Sadikhov, E.M.Kerimova, Yu.G.Asadov, R.K.Veliyev. Fizika, 2001, 7, 4, 45
- Received: 10.02.2007

- [12]. R.Z. Sadikhov, E.M. Kerimova, R.K.Veliyev, A.I.Jabbarov. 13 th International Conference on Ternary and Multinary Compounds. Book of abstracts, 2002, P1-12.
- [13]. S.B.Vakhrushev.V.V. Dzhdanova, B.E. Kvatkovskiy, N.M.Okuneva, K.R.Allakhverdiyev, R.A. Aliyev, R.M.Sardarli. Pisma v JETF,1984,39,6,245 (in Russian)
- [14]. K.R.Allakhverdiyev, A.I.Baranov, T.G.Mamedov, V.A.Sandler, Ya.N.Sharifov. FTT,1988,30,6,1751 (in Russian)
- [15]. S.Ozdemir, R.A. Suleymanov, E.Civan. Solid State. Comm.,1995,96,10,757
- [16]. S.Ozdemir, R.A. Suleymanov, E.Civan, T.Firat. Solid State Comm.,1996,98,5,385
- [17]. R.A. Aliyev, K.R. Allakhverdiyev, A.I.Baranov, N.R. Ivanov, R.M.Sardarli. FTT, 1984,26,5, 1271 (in Russian)
- [18]. *H.Hochheimer, E.Gmelin, W.Bauhofer.* Z.Phys. B:Condens. Matter., 1988,73,2,257
- [19]. R.M.Sardarly, O.A. Samedov, I.Sh.Sadyhov. Solid State Comm., 1991,77,6,453
- [20]. A.K. Abiyev, N.A. Bakhishov, A.E. Bakhishov, M.S. Gadzhiyev. Izv. Vuzov. Fizika, 1989,12,84 (in Russian)