ЛЮМИНЕСЦЕНЦИЯ СЛОИСТЫХ КРИСТАЛЛОВ GaS: Er И GaS: Er, Yb

Б.Г. ТАГИЕВ, О.Б. ТАГИЕВ, З.А. ИБРАГИМОВ, С.А. АБУШОВ, Г.Ю.ЭЮБОВ

Институт Физики

Национальной Академии Наук Азербайджана, AZ-1143, Баку, пр. Г.Джавида, 33

В слоистых кристаллах GaS, активированных отдельным ионам Er^{3+} и парой ионов Er^{3+} и Yb³⁺ исследована фотолюминесценция при 300 К. При возбуждении инфракрасным (ИК) излучением ($\lambda_{воз.}=976$ нм) GaS: 0.1 ат. % Er^{3+} наблюдена антистоксовая люминесценция. В GaS: Er^{3+} , Yb³⁺ при возбуждении азотным лазером ($\lambda_{воз.}=976$ нм) наблюдена увеличение интенсивности излучения, связанного с переходами ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$ иона Er^{3+} . Показано, что предполагаемым механизмом антистоксовой люминесценции является последовательное поглощение двух фотонов одним ионом Er^{3+} , а увеличение интенсивности излучения Er^{3+} при введении в кристаллы GaS пары Er и Yb связано с передачей энергии от иона Yb³⁺ к иону Er^{3+} .

In the single crystals GaS activated separate ions Er^{3+} and pair ions Er^{3+} and Yb^{3+} photoluminescence are investigated at 300 K. Excitation by infra-red (IR) (λ_{exc} = 976 nm) radiation GaS: 0.1 at %Er $^{3+}$ the luminescence we observed up-conversion emission. In GaS: Er^{3+} , Yb^{3+} compound due to intro-centre transition ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$ was observed increase intensity of the radiation. It was shown, that the prospective mechanism up-conversion luminescence is consecutive absorption of two photons by one ion Er^{3+} , and due to energy transition from ion Yb^{3+} to ion Er^{3+} we was observed increase of intensity.

введение

Исследование влияния редкоземельных элементов (РЗЭ) на люминесцентные и фотоэлектрические свойства полупроводников все больше привлекает внимание исследователей. Такие исследования в слоистых полупроводниках А^{ШВVI} были проведены многими исследователями [1-6]. В этих работах, в основном, исследованы влияние отдельных РЗЭ на электрические, фотоэлектрические и люминесцентные свойства таких кристаллов, как GaSe, GaS, InSe и др. Однако в указанных широкозонных полупроводниках не исследованы взаимодействие между парами РЗЭ и между РЗЭ и матрицы. Поскольку в указанных кристаллах наблюдалась эффективная передача энергии от матрицы к РЗЭ [1,4], т. е. через полосы фундаментального поглощения и экситонные состояния, возможно и участие в таких процессах и пар РЗЭ. Кроме того, введение определенных пар РЗЭ, таких как: Eu, Er; Er; Yb; Yb, Tu и др. приводит к появлению в различных широкозонных кристаллах антистоксовой люминесценция. В монокристаллах GaS такие исследования, судя по существующим литературным данным, не проведены. Поэтому нами были выбраны монокристаллы GaS. активированные парой РЗЭ Ег и Үb.

В настоящей работе приводятся результаты исследования фотолюминесценции ($\Phi Л$) слоистых кристаллов GaS активированных парой редкоземельных ионов Er^{3+} , Yb^{3+} .

МЕТОДИКА ЭКСПЕРИМЕНТА

Соединения GaS: Er, GaS: Yb и GaS: Er, Yb синтезировались из отдельных компонентов (Ga, S, Er, Yb), взятых в стехиометрических соотношениях в графитизированных кварцевых ампулах откачанных до 10⁻⁴ мм. рт. ст. в однотемпературной печи при 1030 °C. Монокристаллы выращивались по видоизмененному методу Бриджмена [2] и обладали проводимостью р-типа. Удельное электрическое сопротивление их в зависимости от содержания примеси (0,01÷0,5 ат.%) при 300 К составляло ~ 10^9 ÷ 10^{11} Ом·см.

Спектры ФЛ в интервале температур 77÷300 К исследовались на установках СДЛ-1 и HR-460. Источниками возбуждения служили импульсный азотный лазер (Photonics LN-1000) и перестраиваемый титано-сапфировый лазер.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

При возбуждении импульсным азотным лазером (λ =337.1 нм) спектр ФЛ GaS: Ег (рис.1а) при 300 К состоит из интенсивного широкополосного (λ = 480÷600 нм) и слабого узкополосного участков (λ =650÷900 нм). Широкополосное излучение имеет максимум при 511 нм, а узкополосный участок состоит из отдельных узких полос λ =650÷700 нм, λ =700÷800 нм, λ =800÷900 нм.

Рис. 1а Спектр люминесценции монокристалла GaS: 0.1at. % Er^{3+} при возбужден $\lambda=337.1$ нм при 300К.

При возбуждении кристаллов GaS, содержащих пару P3Э Er³⁺ и Yb³⁺ излучением импульсного азотного лазера ($\lambda_{во3}$ =337.1 нм, τ ≈10 нс) спектра ФЛ охватывает более широкого область длин волн (рис.1б). В отличие от спек-

тра ФЛ GaS: Er^{3+} в спектре GaS: Er^{3+} , Yb^{3+} интенсивность узких полос в области 650-900 нм растет, а в области 900÷1100 нм появляется новое узкополосное излучение, состоящее из нескольких перекрывающихся интенсивных узких полос.

Puc. 16 Спектр люминесценции монокристалла GaS: Er³⁺, Yb³⁺ (0.1 %, 0.1%) при возбужден λ=337,1 нм при 300К.

При возбуждении монокристалла GaS: 0.1% Er, 0.1% Yb при 300К ИК излучением перестраиваемого титансапфирового лазера ($\lambda_{воз.}=976$ нм) наблюдаются антистоксова и Стоксова люминесценции (рис.2а и 2б).

Рис. 2а Спектр антистоксовой люминесценции GaS:Er³⁺ (0.1%) при 300К и различных значениях мощности возбуждающего инфракрасного излучения: 1 – 100 мВт; 2 – 200 мВт; 3 – 400 мВт; 4 – 600 мВт; 5 – 800 мВт; 6 – 1000 мВт

Антистоксова люминесценция охватывает спектральную область 475÷575 нм и состоит из четырех узких полос. Первая узкая интенсивная полоса ($\lambda_{\rm M}$ =489 нм) перекрывается с менее интенсивной второй полосой ($\lambda_{\rm M}$ =495 нм), третия ($\lambda_{\rm M}$ =529 нм) и четвертая ($\lambda_{\rm M}$ =549,7 нм) полосы

отдельны и каждая из них также состоят из двух полос. Стоксова люминесценция охватывает диапазон длин волн 1425÷1625 нм. Для выяснения механизма антистоксовой люминесценции исследованы зависимости антистоксовой и стоксовой люминесценции от мощности возбуждающего ИК излучения ($\lambda_{воз}$ =976нм).

Рис. 26 Спектр люминесценции GaS:Er³⁺ (0.1%) в области ⁴I_{11/2} - ⁴I_{15/2} переходов иона Er³⁺ при 300К и различных значениях мощности возбуждающего инфракрасного излучения: 1 – 100 мВт; 2 – 200 мВт; 3 – 400 мВт; 4 – 600 мВт; 5 – 800 мВт; 6 – 1000 мВт

Эти зависимости в координатах lgI~lgW представлены на рис.3. Видно, что интенсивность антистоксовой люминесценции при мощностях возбуждающего излучения 100÷600 мВт почти линейно растет от мощности (крив.1), а дальнейший рост последней приводит к резкому увеличению её. Интенсивность излучения в области 1425÷1625 нм до 800 мВт линейно растет от мощности возбуждающего излучения, а дальнейшее увеличении последней до 1000 мВт приводит к сверхлинейному росту её.

Рис.3 Зависимость интенсивности антистоксовой (1) и стоксовой (2) люминесценции GaS:Er³⁺ от мощности возбуждающего ИК излучения

ОБСУЖДЕНИЕ

Интенсивная широкополосная ФЛ GaS: 0,1 ат.% Ег при 300 К (рис.1а) в области спектра $350\div550$ нм с максимумами при 432 и 511 нм при возбуждении излучением импульсного азотного лазера ($\lambda_{\rm B}$ =337.1 нм, 10 нс), связана с межзонными, экситонными переходами и дефектами кристаллической решетки [7-11]. Узкополосное излучение в области 650÷900 нм связано внутрицентровы-

 ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ переходами (525-600 ми нм). ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ (640-700 нм), ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$ (700-800нм), ${}^{2}H_{11/2} \rightarrow {}^{4}I_{13/2}$ (800-850hm), ${}^{4}S_{3/2} \rightarrow {}^{4}I_{13/2}$ (850-900нм). Увеличение интенсивности излучения узких полос ФЛ в области длин волн 650-900 нм и появление новых интенсивных узких полос в области 900-1050 нм в спектре излучения GaS, содержащего пару РЗИ Ег³⁺ и Yb³⁺ (рис.1б), по-видимому, связано с введением в эти кристаллы Yb. Известно, что у ионов Yb³⁺ и Er³⁺ имеются резонансные возбужденные уровни ${}^{4}I_{1/2}$ и ${}^{2}F_{5/2}$ соответственно и РЗИ в монокристаллах GaS возбуждаются через полосы фундаментального поглощения и экситонные состояния [4]. Поэтому возможно передача энергии от возбужденного уровня ${}^{2}F_{5/2}$ иона Yb³⁺ к возбужденному ${}^{4}I_{11/2}$ уровню ион Er³⁺, т. е. ионы Yb³⁺ могут играют роль сенсибилизатора люминесценции Er³⁺. Предполагаемая схема передачи энергии от иона Yb³⁺ к иону Er³⁺ при возбуждении излучением импульсного -азотного лазера (λ_{B03} =337.1 нм) представлена на рис.4.

При увеличении мощности возбуждающего ИК излучения почти квадратичный рост интенсивности антистоксовой люминесценции показывает, что происходит последовательное поглощение двух фотонов одним ионом Er³⁺ [14] (рис.5).

Таким образом, введение в монокристаллы GaS пары РЗИ Yb³⁺ и Er³⁺ приводит к увеличению интенсивности излучения ионов Er³⁺ при возбуждении излучением импульсного- азотного лазера ($\lambda_{воз}$ =337.1 нм, τ =10нс), а при

- [1]. Г.Б.Абдуллаев, С.А.Абушов, Ч.М.Брискина, В.Ф.Золин, В.М.,Маркушев Г.М.Нифтиев, Б.Г.Тагиев Квантовая электроника. 1984, №11, С.606.
- [2]. Б.Г.Тагиев, Г.М.Нифтиев, С.А.Абушов С.А. Phys. Stat. Sol. (b). 1983. V. 118. K13.
- [3]. Б.Г.Тагиев, С.А.Абушов, Г.М.Нифтиев Г.М. ФТП. 1984. Т. 18. С. 1904.
- [4]. Б.Г.Тагиев, С.А.Абушов, Г.М.Нифтиев, Ч.М.Брискина, В.Ф.Золин, В.М.Маркушев, Ф.Ш.Айдаев Phys. Stat. Sol. (a). 1985. V. 89. К 191.
- [5]. *Нифтиев Г.М., Тагиев Б.Г., Абушов С.А.*. Доклады АН Азерб. ССР. 1983. Т.ХХХІХ. №2. С. 25-28.
- [6]. Б.Г.Тагиев, В.Ф.Золин, Г.М.Нифтиев, Ч.М.Брискина, В.М.Маркушев, С.А.Абушов, Ф.Ш.Айдаев Оптика и спектроскопия. 1987. Т. 63. № 3. С. 557-559.
- [7]. G.L.Belenki, R.Ch.Nani, E.Yu.Salaev, R.A Suleimanov Phys. Stat. Sol. (a). 1975. V. 31. №2. P. 707-711.

Received:10.02.2007

возбуждении ИК излучением (λ_{BO3} =976 нм) кристаллов GaS: Er³⁺ происходит последовательное поглощение двух фотонов одним ионом Er³⁺.

Рис.5. Схема преобразования инфракрасного (λ_{воз.}=976 нм) в видимое(λ=550 нм) излучение.

- [8]. Г.Л.Беленький, М.О.Годжаев, Э.Ю.Салаев Письма в ЖЭТФ. 1977. Т. 26. №5. С. 385-388.
- [9]. В.П.Мушинский, М.И.Караман Фотоэлектрические и люминесцентные свойств халькогенидов галлия и индия. Кишинев, 1975. 79 С.
- [10]. A.Cingolani, A.Minafra, P.Tanyalo, and C.Paorici Phys. Stat. Sol. (a). 1971. V. 4. №1. P. K83-K85.
- [11]. A.Merciewr, E.Mooser, J.P.Voitchovsky J. Luminescence. 1973. №7. P. 241-266.
- [12]. Б.Г.Тагиев, Г. М.Нифтиев, Ф.Ш.Айдаев, В.Ф.Золин, Ч.М Брискина., В.М.Маркущев Оптика и спектроскопия. 1987. Т. 62. №2. С.461-463
- [13]. B.G Tagiev., A.N Georgobiani., O.B Tagiev., P Benalloul., C.Barthou, S.A.Abushov, F.A.Kazymova Journal of Physics. Condensed matter. 2004. V. 16. №10, P. 8075-8084.
- [14]. F. Auzel Comptuer quantuqie par transfert denergie de entre dcux ions de terres rares dans un tungstate mixteet dans un verre. C.R.Acad. Sc. Paris, B.1966. V. 262. P. 1016-1019.