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The group theoretical approach has been developed for one-dimensional generalized non-abelian conformal affine Toda models. 
 
1. The study of classical and quantum non-linear 

integrable models is of great interest in Mathematics and 
especially in   High Energy Physics, where such models have 
been used as laboratories to develop methods to explore the 
non-linear perturbative aspects of gauge theories, gravity and 
string theory. In particular, they could help in understanding 
some stable classical solutions, like monopoles, which must 
have an important role in the quantum theory, and which 
cannot be understood by the existing methods.  

Within the integrable models in 1+1 dimensions, the 
investigation of the different Toda Field Theories has 
recently received a lot of attention. According to their 
underlying algebraic structure, they can be divided into three 
categories; each one exhibiting nice characteristic properties. 
First, associated to the finite simple Lie algebras, there are 
the Conformal Toda models, which are conformally invariant 
1+1 field theories. Even more, they permit the construction of 
extensions of the Virasoro algebra including higher spin 
generators, namely W-algebras. The second class of theories 

are the Affine Toda models, based on loop algebras, which 
can be regarded as a perturbed Conformal Toda model where 
the conformal symmetry is broken by the perturbation while 
the integrability is preserved [1]. One of their main properties 
is that they possess soliton solutions. These two classes of 
models are called abelian or non-abelian referring to whether 
their fields live on an abelian or non-abelian group [2, 3, 4, 
5].Finally, the conformal symmetry can be restored in the 
abelian Affine Toda models just by adding two extra fields 
which do not modify the dynamics of the original model; one 
of these fields is a connection whose only role is to 
implement the conformal invariance. These are the so called 
Conformal Affine Toda models [6, 7], and they are based on 
a full Kac-Moody algebra; moreover, they are integrable [8], 
and have soliton solutions [9]. In fact, many properties of the 
Affine Toda models can be more easily understood by 
considering them as the Conformal Affine Toda models with 
the conformal symmetry spontaneously broken.  

At the same time the problem of constructing of the 
solutions of self-dual Yang-Mills (SDYM) model and its 
dimensional reductions, the one dimensional WZNW model in 
our case, in the explicit form for arbitrary semisimple Lie 
algebra, rank of which is greater than two, remains important 
for the present time. The interest arises from the fact that 
almost all integrable models in one, two and (1+2)-
dimensions are symmetry reductions of SDYM or they can 
be obtained from it by imposing the constraints on Yang-
Mills potentials [10-27].  

Two effective methods of generating of the exact 
solutions, the Riemann Hilbert Problem formalism [20] and 
the discrete symmetry transformation method [22], have been 
applied to Toda like systems.  This work is devoted to 
construct a group theoretical background of earlier 
considerations. 

2. The two-loop WZNW model was introduced in [6] as 
the generalization of the ordinary WZNW model to the affine 
case. Its equations of motion are given by 
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where ±∂  are derivatives with respect to the light-cone 
variables txx ±=± , and g)  is an element of the group G  
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where c
abf  are the structure constants of a finite (real) 

semisimple Lie algebra G, n  and m are integers, and abg  is 
the Killing form of G, i.e., )( baab TTTrg = ,  aT  being the 

generators of G. The non-degenerate bilinear form of G
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defined as  
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and we will use the same notation, Tr , for both the Killing 
form of G  and the bilinear form of G

)
. 

The two-loop WZNW model is invariant under left and 
right translations 
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The corresponding Noether currents are the components of 1−

−∂ gg))  and gg ))
+

− ∂1 , and they generate two commuting copies 
of the so called two-loop Kac-Moody algebra, defined by the relations 
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The left and right currents satisfying the above relations are related to the group element g)  in eq.(2.1) by 
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where abg  is the inverse of the Killing form abg  defined above. The different meaning of the two central extensions in 
eqs.(2.6)-(2.9) algebra is clarified by expressing the algebra as 
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where VU ,  are two elements of the Kac-Moody algebra 

FG ,
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 is either RF or LF , and Tr  is the invariant bilinear 

form of G
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Consider now a gradation of the Kac-Moody algebra G
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The reduction presented in this section does not require 

that this gradation is integer; it just needs that the grades s 
take zero, positive and negative values, i.e., 
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We now consider those group elements that can be 

written in a “Gauss decomposition” form 
 
  GNBMg ∈=)                          (2.17)  

 
where BN , and M are group elements formed by 
exponentiating elements of 0, GG

))
+  and −G

)
respectively. 

Using eq.(2.17), we can write the equations of motion 
(2.1) as 
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Although the quantities RLK /  are not chiral, they have a 

simpler structure than the currents and will be very useful in 
what follows. We will reduce the two-loop WZNW model by 
imposing constraints not directly on the currents but on 

RLK / . We impose the constraints 
 
             ( ) l
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where l±Λ  are constant elements of lG±

)
 . These constraints 

reduce the two-loop WZNW model to a theory containing 
only the fields corresponding to the components of B and to 

the components of N and M associated to the generators 
whose grade is l<  and l>  respectively. 

To obtain the equations of motion for such model one 
notices that the constraints (2.22) and (2.23) imply that 
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Therefore the only terms of zero grade on the right hand 
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So we get 
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which can also be written as 
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These are the equations of motion of what we call the 
generalized non-abelian conformal affine Toda models. 

 3. The one dimensional reduction of self duality 
equations obtained in [20] are the equations for the 
element f , taking values in the semisimple algebra,
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Here ±XH ,  are generators of ),2((1 CSLA  algebra 
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embedded to gauge algebra in the half-integer way. 
 
Let’s rewrite (3.1) in the equivalent form: 
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This equation after changing the variable rt ln= has the 

following form 
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Introducing the notation  
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multiplying (2) from the left side by 
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Due to the evident equality 
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the last equation can be rewritten in a form 
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In terms of these notations we have from (3.3) the 

following expression 
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Then (3.4) has a form 
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The equation (5) is one-dimensional evolution equation 
defined by Lax pair operators and it is one of the principal 
criteria of equations integrability. 

From the presentation (3.5) it is followed that 
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and solution of the equations can be found in a form 

 
                             1
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where )(tϕ  takes values in the corresponding Lie group and 

00 =
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From equation (5) and presentation (6) it is directly 

followed the expression for the operator A : 
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Taking into account (3.6) and (3.7) the last expression can 

rewritten in a form 
 

],[)(],[ 1/1//1/1
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Making the substitution qeHt=ϕ and introducing a new 

variable te−=τ , we have  
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Equation (3.8) is one-dimensional generalized non-

abelian conformal affine Toda model as it is obviously seen 
from eq. (2.26). The group-theoretical approach derived for 
this equation in paragraph 2 gives reasonable opportunities to 
obtain the exact solutions for arbitrary semisimple algebra 
and that will be the subject of the further publications.
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