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THERMOELECTRIC EFFECTS IN QUANTUM WELL
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G.M. Abdullayev Institute of Physics of National Academy of Sciences,
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In this paper we have calculated the thermomagnetic tensor components for the current density in a quantum well for any degree of
degeneration. In our work, we are examinated the diffusion component under the assumption that elastic scattering is dominated, and show
that the magneto-thermo-e.m.f. is not determined by the entropy only, as is the case for three dimensions. Elastic electron scattering by
acoustic phonons is considered. The magnetic field is directed across of confinement direction, i.e. it is located in the plane of a two-
dimensional electron gas. When temperature gradient is along the direction of confinement, magneto-thermoelectric power has a
nonmonotonic dependence on magnetic fields. For the magnetic fields less than 4 T magneto-thermoelectric power increase with the
magnetic field, and decreased in higher magnetic field. The relative decrease magneto-thermoelectric power achieves 20% at the minimum,
which is a significant change and can be easily detected in an experiment. When temperature gradient is along the direction of the free
motion, magneto-thermoelectric power is monotonically increasing with magnetic field. For reference, are shown dependence of the non-

dissipative magneto-thermoelectric power S/(e n) on magnetic field.

The theory of the quantum thermomagnetic effects in
size-quantized systems was studied in [1-8]. In [1,2] the case
of a strongly degenerate electronic gas was considered and a
focus was placed on the oscillation phenomena. In [3] the
thermopower in quantum well structures has been calculated,
and the size dependence of thermopower in a quantum limit
for different mechanisms of electronic scattering has been
considered. The authors used the kinetic equation method and
the density matrix approach. In the latter case, the scattering
was entered into the equation of motion for the density matrix
through the lifetime of a quantum state. In [4] the magneto-
thermoelectric power of a two-dimensional electron gas
(2DEG) was investigated in the regime of the quantum Hall
effect at values of a magnetic field where thermopower is
proportional to the entropy of the two-dimensional electron
gas. In [5] the magneto-thermoelectric power of a two-
dimensional electron gas has been investigated theoretically
within the framework of the Boltzman kinetic equation for
different mechanisms of electronic scattering taking into
account phonon-drag contributions.

Hicks and Dresselhaus [6] predicted that the
thermoelectric figure of merit for two-dimensional quantum
wells and one-dimensional quantum wires should be
substantially enhanced relative to the corresponding bulk
materials. A theoretical study of this effect has been
undertaken for a bismuth nanowire [7].

The theory of thermopower in quantum dots was
developed in [8]. In this work it has been shown that there is
an opportunity to create an appreciable temperature
difference in a nanostructure and to measure the potential
difference induced by this temperature gradient. The paper
provides theoretical calculations of magnetothermoelectric
power in quantum wells and quantum wires.

In this paper we have calculated the thermomagnetic
tensor components for the current density in a quantum well
for any degree of degeneration. It is common knowledge that
the thermoelectric tensor has two contributions - diffusion
and phonon drag, which are linearly additive ones. In our
work, we are given an examination the diffusion component
under the assumption that elastic scattering is dominated, and
show that the magneto-thermo-e.m.f. is not determined by the
entropy only, as is the case for three dimensions. Elastic
electron scattering by acoustic phonons is considered. The
magnetic field is directed across the confinement direction,
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i.e. it is located in the plane of a two-dimensional electron
gas. Thus, two cases for the relative arrangement of the
current direction and the confinement direction are possible.
In the case where the current is located in a plane of a two-
dimensional electron gas it is sufficient to confine ourselves
to the relaxation time approximation and to use the kinetic
equation. In a case when the current is along the direction of
confinement it is necessary to use the density matrix
approach obtained in [9-11] for calculation of the diagonal
conduction tensor components.

We consider a simple model for the quantum well, in
which a two-dimensional electron gas is confined in the x-
direction and a homogenous static magnetic field B parallel
to the z-axis, with the vector-potential A (0,x B,0) in the
Landau gauge. Then the one-particle Hamiltonian is given by
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where p=(p,.,p,,p.) and m’", respectively, are the

momentum operator and the effective mass of a conduction
electron. U(x) is the confining potential in the x-direction
which is characterized by the parabolic potential:
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The eigenvalues and eigenfunctions of the Schrodinger
equation with Hamiltonian (1) are determined by the
expressions
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where @ = W is the “hybrid” frequency, @, = ;fc

is the cyclotron frequency of electrons and N - is the
oscillation quantum number. The expression
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ox(x—x,)=

represents the wave function of a harmonic oscillator,

X, = —%Rzky - is the oscillator center, and R = ,/-I--
is the magnetic length , Hy(¢) is the Hermite polynomial,
a= (N Sk, ,kz) is a set of quantum numbers that determine

the electron states in a magnetic field.
For the magnetic field directed along the z - axis the
current density components can be written in the form [12]

_ﬁxxvxT_leyvyT
-p.vV.T-p,V,T

jx = O—xxEx + O-xyEy

J, = U},XEX + O'ny (6)

where o, and [, are the conduction tensor components,

E, is the components of the electric field and VT is the
temperature gradient.

From the conditions j,=j,=0, V,7=0 we obtain the
thermoelectric power in a transverse magnetic field

E )GXY - X G X
a, == ™)
vr o,0,-0,0,
Putting j, = j, =0,V T =0 we obtain from Egs. (6)
a, = E, _ PuOy POy )
vr o.,0,-0,0,

" it is
necessary to calculate both diagonal and non-diagonal|

For the calculation of kinetic coefficients & ., o

y =IORO ,kéz, Oy~
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Using Eqns. (11)- (12) in Eq.(9) and performing the summation over

expressions for the current density components:
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In a zero-order approximation with respect to the
scattering potential J”  the matrix elements of the density

matrix p, . have the form
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|conduction tensor components 0, and ﬂik [2,13].

Note that in bulk semiconductors o,>0,,

>>p., 0, >>0, and ﬂxy >> ﬂyy . It is related to

yx
the fact that a decrease in scattering potential results in the
diagonal electric conductivity tensor components tending to
zero, while the non-diagonal components stay finite[12]. In
our case, as we will show later, it is not true.
The average value of the current density components
carried by the electrons is defined by the expression

J. = —eTr(pv(’)) =Y PV s i=(X0,2) (9)

where p is the density matrix, and V

operator.
The matrix elements of the density matrix are evaluated
from the solution of Liouville's equation

- is the velocity

ih— P
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where H , is the total Hamiltonian of the system A =H +V + F

which consists of the Hamiltonian (1), the scattering potential
V, and the electron-electric field interaction F =e(E-r).

The matrix elements of the components of the velocity
operator in the representation (4) can be written as

(11)

(12)

= ( N, k;,, kz) we obtain the following

(13)
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Poo = e(Ex Xy TE, Vo )@ (15)
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where X, and y . are the matrix elements of the x and y
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coordinates, respectively. In Eq.(15) f, = f (Sa) is the

equilibrium electron distribution function (Fermi- Dirac
function)

£, =6

-1
1+exp( T }

0
where ¢ is the chemical potential of the electrons, and &,

f(s,) (16)

is the Boltsmann constant.
Substituting Eq.(15) into Eqgs.(13)-(14) and calculating
the matrix elements of the coordinates we obtain
2
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where z f , = 1 is the areal density of the two-dimensional
a
electron gas and
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In the limit of strong magnetic fields, wy<<w, , or
equivalently, in the bulk case, when @, — 0 the energy
spectrum (3) equals that of an electron in a magnetic field. In
this case the expression for &, in (17) coincides with that
for the non-diagonal component of the conductivity tensor of
the bulk semiconductor material.

In order to find the explicit form of the non-diagonal

component f,, (B) we will take advantage of the Onsager
reciprocal relation

|
B, (B)=—7,,(-B) (20)

where y, (B) is the coefficient in the formula of i-th heat

flux density transported by the electrons W, =y, E, .

In ref. [14] it was shown explicitly that in the presence of
a magnetic field it is necessary to take into account the
contribution to the current of electrons the edge current

—cVxM due to magnetization M. In this case the
coefficient v, can be represented as

Vo =V —cM @1)

where }/;g) is the coefficient in the heat flux density in the

absence of scattering which defined by [12, 1]
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The magnetization M
—( et )T’4 , where Q=-kTY, ln(l + exp(i;—?))

0B
is the Gibbs thermodynamic potential.
Substitution of the Eq.(15) into Eq.(22) yields the

following expression for ;/;S’

is defined by the relationship

M

2
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where & = z g, f . 1s the average energy of the system.
a

The magnetization can be written as

2
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where
@ m ©
Q=—(kT)>Z j In(1 + exp(;7 — x))dx
(kT) w, 2w’ ; xy
(25)
is the thermodynamic potential per unit area.
Using (24) we obtain the following expression for }/;g)

instead of Eq.(23):
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On the other hand, according to the definition of the
thermodynamic potential

Q=5-¢n-TS 27)
where S = —(g—?)&g is the entropy per unit area which has
the following form:

mk,T o 5\ o (e
S= 2o @, 2 ((xN—n)ln(lJre )—2Lz2 (—e ))

(28)
where Li, (&) is the polylogarithmic function of order v.
Substituting (27) into (26) and using (21) we obtain

ew,
V=TS (29)
mao
Finally, for B we obtain
ew
B,=—58 (30)
mao

Similar expression was obtained in Ref.[1] for a quantum
wire.
For the strong magnetic field case, w.>>w,, Eqn. (30) is



F.M. HASHIMZADE, Kh.A.

reduced to ﬂiy”””‘) =c¢S/ B, which was obtained in Ref.[14]

for bulk specimens. At zero temperature, the transport
coefficient ﬂx ) consequently, the entropy vanishes as

required by the third law of thermodynamics.
For the calculation of the diagonal components of tensors

o

. and ,BW when the electric field or the temperature
gradient are perpendicular to the plane of two-dimensional
electron gas we will make use of the expressions obtained in

[9] and [12]:

_ e __Qf(ga) (x,—x,)° B
ﬂxx - QOT a:a!( aga ] 2 (ga g)Waa,
(31)
e’ 6f(8a) (xa, —xa) 2
= — w .
“TaT ZW, o¢, 2 w G2

where Q is the volume of the system, W __. is the electron
transition probability from state o = (N Wk v,kz) to state

a’:(N’,kjv,k;) caused by the effect of the scattering
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potential.

The scattering mechanism explicitly considered in the
present paper is the acoustic phonon deformation potential
(DPA  scattering).  Acoustic-phonon  scattering  via
piezoelectric coupling could also be considered, but this will
have a similar temperature and magnetic-field dependence to
DPA scattering and so is not included separately. because
will not qualitatively affect the results. Other scattering
mechanisms, as the interface roughness mechanism, playes a
negligible role in heterojunctions, because with the current
crystal growth methods, high crystalline quality with
atomically sharp resolution is easily achieved, that is
interface are not especially rough. In addition, impurity
scattering arising from background impurities in the quantum
well or remote ionized donors it was to be expected, however
in high magnetic fields the magnetic length will be much
smaller than the scale of fluctuations due the remote
impurities, so remote impurity scattering can be treated by
the short-range point defect approach. In this case, the
scattering from the point defects has the same functional form
as for scattering from the DPA. Only, the temperature and
electron concentration dependence will be different.

The transition probability due to the carrier scattering by
acoustic phonons has the form

ZEDILC)] <a | T a'> I’ x
7 (33)
(N8, 8y Olew—e=00,)+(N,41)5, 6, 6(e, 2, +ho,))
where | function) for phonons with frequency @, =s¢q .
2
w(q) = 7k q (34) Using the wavefunctions from Eqn.(4), one can write the
0sQ, matrix elements of the electron - phonon interaction as
Here s is the speed of sound, o is the density of the )
iq- 2
material, £, is the constant of the acoustic phonon <05 |e™" | 0('> "= ‘JNN’ (qxsf]y) Kok, 5k;,kz+qz (35)
deformation potential, q is the phonon wave vector, and
-1
N, = (exp ( ’Z’”T/ )_ 1) is the occupation number (the Planck ~ Where
' |
) ) N'-N 5 2
, : N R+ %) | R (a+a ) [ Ble+a ) 6
‘ NN'(qx’qy) _ﬁexp - 2 ) N

Here L'(&) is the associated Laguerre polynomial.

Further we will focus on the extreme situation, namely,
the quantum limit in which the scattering of electrons is
confined within the N =N'=0 level. For the quantum
well in a magnetic field the quantum limit criterion is

ho>k,T.

Above 20 K the available acoustic phonon energies will
be small compared to koT . Since the electron scattering by
the acoustic phonons is elastic, it is possible to neglect the

phonon energy ha)q in the arguments of the ¢ -functions in

(33). In addition, as i, < k,T , therefore it is possible to

expand the Plank function. Thus we obtain
2k,T
hsq

Taking Eq. (37) into account we can rewrite the

2N, +1 (37)

expression for o in the form
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Eq.(38) into an integral form in a usual way we introduce
new, deformed coordinates,

©r) 23 35 (-Z)( L f e

@, 1

5 2
1 3e'n| o,
Gxx = « 2|
Ty, mw, \ O,
Similarly, for S we obtain
5 2
ky 1 3e'n| o, w, 1
IBxx =TT T T o (1. )
e T, maw;\ @ ln(1+e

In Eqns.(41) and (42) the following notations were used

B [272_ S2ph7/2

T, = 43)
Pom? BN T,
k,T o’
=—— (44)
2who,
R
f0=(1+exp[x—77]) , N=1-Xx, (45)

and , F, (al N7 bl ) bz; z ) is the generalized hypergeometric

function [15].

For the case of the electric field and the temperature
gradient directed along the plane of two-dimensional electron
gas, we use the solution of the kinetic equation to calculate
the diagonal components of the tensors ¢, and f,, . These are

given by
0
L&‘a)] z-avli (46)
og, '

g
w Q_oz(_

2 772
en @, ®

Oy = . A\ ol .[ -
m ln(1+e ) 0] 0
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® ln(1+e’7)

212 2 2712 (38)
Wk Wk (o) Pk,
2m' 2m" \w ) 2m" |
K=k, k =2k, k=k, k.=k @0
w
Using the momentum conservation law k'=k and
integrating over the angle between vectors k' and k we
obtain:
| _%h JF, S 7.3 i 8ax |dx @1)
0 0. 442
o of, . 573
——2 |x(x— F|—,—;—,2;—8ax |dx 42
)IO( axj( 77)22(442 ] “2)
e2 af(&‘a) 5
ﬂyy = QOT ;[_ aga (ga —f)Taka (47)
where
hk
v, =lakg:(&j L (48)
and 7, is the relaxation time of electrons.

For the elastic scattering by acoustic phonons the
relaxation time is given by a simple expression:

L)

Taking into account expression (33) for the transition
probability and proceeding the same was as above in the
calculation of the transverse diagonal components of the
transport coefficients, the following expression for z obtains
in the quantum limit:

(49)

(50)

- [a)ojs/z 1
— Yo 2
1) F(%,i-i,l;_‘”‘% (g_Lw))

247 492 whot

Substitution of (49) into (46) and (47) and summation
over « yields

%j 1

xdx
ox Fz(%,% 1, 1—8ax)

(5D
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Combining Egs.(17), (30), (41), (42), (51) and (52) with
Egs. (7) and (8) and taking into account the symmetry of the
conductivity tensor, we obtain the following expressions:

1 3k0nK1K4+Sln2(1+e'7)

Ay == —, (53)
Y en 3K K +In’(1+¢)
1 3k0nK2K3+Sln2(1+e’7)
o =7 —~, (54)
en 3K K,+In’(1+¢€7)
where
K, = (-L o5 é91;3,2;—8% xdx  (55)
o\ ox 4°4°2
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K, _Io (_a_;}c (x—n) F [23235,2,—861)6}1&
(56)
o 0 1
3:,[ % xdx (57
ol ox ) ,F(4,351,15-8ax)
©( 0 x-n
K =[[-% (x—7) sl o)
’ ox 2&(%9%;%,1;—861)6)

Eqs.(57)-(60) is applicable for any degree of degeneracy
of two-dimensional electron gas.

For the degenerated electron gas, when = {/kyT >1, the
expressions for the transport coefficients can be considerably

simplified. In this case we replace (—%) by the delta

function §(e —¢) . Then we obtain

mk,T o .
= — 1]y (59)
271 o, 7
‘Tkio
s = E Sl (60)
67 w,
w e'n
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For the case of strongly degenerate electron gas the
thermopower can be written as

7k ¥ (1+3a7¥,)+1

P N ) o7
o :_ﬂzlfo ¥ (1-2aq¥,)+1 )
' erj (3, +1)
where
S T3 — 0
= T
2172 (ZaZaEsL_gan)
9 11e5 Qe_ n
L L
B (55753,25-8a7))

In the case of strongly degenerate electron gas and weak
fields, 77 depends on the magnetic field only weakly, and

the observed changes in the transport coefficients are due to
parameter a

_ ko Jr35k07r2a
3(eff)  24e

(71)

av

koa® 3 (koﬂ2 )a

- 4e

BT (ep)

yy

(72)

one can see that «,, decreases by absolute value, whereas
absolute value a,, , on the contrary, increases. Coefficients
oy and ¢, are proportional to the temperature. In a strong
magnetic field the situation is similar to the quantum limit for
the bulk case.

We present a numerical calculations for the
thermopower for GaAs/Al,Ga; As parabolic quantum well.
We wuse the following set of physical parameters
m" =0.066m, , where my is the free electron mass. The
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parameter of the parabolic potential is @, =1.4x10" s~ .

The value of the deformation-potential constant is as £; =10
eV . The density of the material and the speed of sound are

Notice that numerical calculations for the quantum limit
criterion must be carried out when the Fermi level is between

the first and second subbands hw/2 < ¢ <3hw/2.

taken as p=5x10’kg/m’ and s=5400m/s
120
100
o
K #
80 o .
6o | Tl
L1 1
0 2

Fig. 1. Absolute value transversal magneto-thermoelectric power of two-dimensional electron gas versus the magnetic field. 7=20K,

n=10" m'z;a},}, — dotted, a,, — dashed, S/(e n) — dotdashed.

The dependence of absolute value the magneto-
thermoelectric power on magnetic field are shown in Fig.1
for T=20 K, n = 10" m™. When temperature gradient is along
the direction of the confinement, magneto-thermoelectric
power «,, has a nonmonotonic dependence on magnetic
fields. For the magnetic fields less than 47'¢,, increase with
the magnetic field, and decreased in higher magnetic field. As
one can see from Fig. 1, the relative decrease «, achieves

20% at the minimum, which is a significant change and can
be easily detected in an experiment. When temperature
gradient is along the direction of the free motion magneto-
thermoelectric power ¢, is monotonically increasing with
magnetic field. For reference, in Fig.1 are shown dependence
of the non-dissipative magneto-thermoelectric power S/(e n)
on magnetic field [16].
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KVANT CUXURUNDA TERMOELEKTRIK EFFEKTLOR

Bu moqalads ixtiyari cirlasma halinda kvant ¢guxurunda coroyan sixliginin termomagqnit tenzorunun komponentlori hesablanmigdir. Biz
diffuziya komponentlorini elastiki sapilme halinda hesablayaraq gostermisik ki, maqnit termoelektrik haroket qiivvesi {i¢dl¢iilii halda oldugu
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kimi ancaq entropiya ilo toyin edilmir. Elektronlarin akustik fononlardan elastiki sopilmasine baxilmigdir. Maqnit sahasi ikidlgiilii elektron
qazinin miistovisi tizerinds yerlogsmisdir. Elektron qazi miistovisine normal istigamoatds qradient temperaturu yaradildigda maqnit termo-ehq
magqnit sahasindon geyri-monoton asili olur. Magnit sahosi 4T-don kigik olduqda maqnit termoehq sahadon asili olaraq artir, maqnit sahosinin
yuxar1 qiymatlorinds iso azalir. Minimum halda maqnit termoehq-nin nisbi azalmasi 20% toskil edir vo eksperimentdos asanliqla agkar edilo
biler. Temperatur qradiyenti sarbast horokat istigamotinds yonsldikde maqnit termoehq maqnit sahasinden asili olaraq artir. Miiqayise iigiin
qeyri-dissipativ maqnit termoehq-nin S/(en) maqnit sahasindan asililig1 gostorilmisdir.

®.M. I'amum3zane, X.A. I'acanoB, b.I'. Mexauen
TEPMODJIEKTPHUECKHUE Y®PEKTbHI B KBAHTOBOM SIME

B naHHO# cTaThe Mbl PaCCUNUTAIM KOMIIOHEHTHI TEPMOMATHUTHOTO TEH30pa Ul IUNIOTHOCTH TOKAa B KBAHTOBOHW SIME C IIPOHU3BOJILHOM
CTEIEHbIO BRIpOXeHHs. B Hamteit pabote Mbl ipoBepuiin AU((GYy3HOHHYIO KOMIIOHEHTY B MPEIIOI0KEHUH JOMUHUPYIOLIEH POJIN YIIpyroro
paccesiHUS M MOKa3aHO, YTO MarHeTOTEPMOd/IC ONMpENeseTCsl HE TOJNBKO JHTPOIHEH, KaKk B TPEXMEPHOM ciyuyae. PaccMOTpeHo ympyroe
paccesiHHe JIEKTPOHOB aKyCTHUECKUMH (OHOHAMH. MarHUTHOE II0JIe PACIIONIOKEHO B INIOCKOCTH JBYMEPHOTO JIEKTPOHHOrO rasa. Korma
co3JaeTcs TeMIePaTypHBIH I'paJyieHT BJOJIb HANPABICHUS OrPAaHUYEHHS, MAaTHUTOTEPMOSAC HEMOHOTOHHO 3aBHCUT OT MarHUTHOTO MOJIS.
Jnst MarHUTHOTO TOJISt MeHbIIero, 4eM 4T, MarHeTOTepMOd/IC YBEINYNBACTCS C POCTOM MarHMTHOTO ITOJIS, HO YMEHBIIASTCS] IPH BBICOKUX
3HAUEHUSIX MarHuTHOro noiisi. OTHOCHTENBHOE YMEHbLICHHE MarHetoTepModic pocturaer 20% npy MUHHMyME, KOTODPBIH SIBIISETCS
CYIIECTBEHHBIM W3MEHEHHEM M MOXET ObITh JIErko oOHApy)XeH IpH 3KcrepuMmeHTe. Korna teMmnepaTypHbIid rpaJMeHT HAIpaBlCH BIOJb
HaIpaBJIeHUus. CBOOOIHOrO IBMKCHHS, MAarHeTOTEPMO3AC MOHOTOHHO PacTeT ¢ POCTOM MarHUTHOro mossi. JIjist cpaBHEHMS —IOKa3aHa
3aBHCHUMOCTD HEVICCUIIATUBHON MarHeTOTEPMOdC S/(en) OT MAarHUTHOTO TIOJIS.
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