ВЛИЯНИЕ МАГНИТНОГО ФАЗОВОГО ПЕРЕХОДА НА ПЕРЕНОС ЗАРЯДА В СЛОИСТОМ ФЕРРИМАГНЕТИКЕ TIC_0S_2

Р.Г. ВЕЛИЕВ

Институт Физики им. академика Г.М. Абдуллаева Национальной Академии Наук Азербайджана Az-1143, Баку, пр.Г.Джавида, 33

 $77 \div 400~{\rm K}$ temperatur intervalında TlCoS₂- nın elektrik və maqnit xassələri tədqiq olunmuşdur. Göstərilmişdir ki, birləşmə $T_c \approx 112{\rm K}$ və $T_p \approx 120{\rm K}$ göstəriciləri ilə ferrimaqnitikdir. Elektrikkeçiricilik xassəsinə əsasən birləşmə yarımmetaldır və laylı ferrimaqnetik TlCoS₂- də yükdaşıyıcılara maqnit faza keçidinin təsiri müşahidə olunmuşdur.

В интервале температур 77÷400 К исследованы магнитные и электрические свойства $TICoS_2$, которые показали, что данное соединение является ферримагнетиком с $T_c \approx 112$ K, $T_p \approx 120$ K и обладает полуметаллическим характером электропроводимости. Обнаружено влияние магнитного фазового перехода на перенос заряда в слоистом ферримагнетике $TICoS_2$.

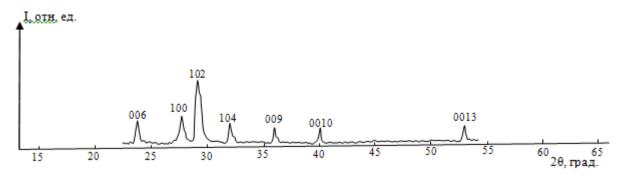
In the temperature range 77÷400 K the magnetic and electric properties of $TICoS_2$ were investigated, which show, that given compound is ferrimagnetic with $T_c \approx 112$ K, $T_p \approx 120$ K and possess the character semimetalic electroconductivity. The influence have been found the magnetic phase transition on the transfer charge in layer ferrimagnetic $TICoS_2$.

ВВЕДЕНИЕ

Исследование влияния магнитного фазового перехода на перенос заряда в магнитоупорядоченных соединениях является одной из центральных задач в физике магнитных явлений. Проблема стала более актуальной в связи с появлением сильноанизотропных (слоистых, цепочечных) магнитных кристаллов, в которых экспериментально обнаруживаются особенности, вытекающие из модели Изинга-Гейзенберга [1].

Эти особенности, прежде всего такие, как явное отклонение от λ — типа аномалии на температурной зависимости теплоемкости (в адиабатическом калориметре), могут наблюдаться только в магнетиках, кристаллическая структура которых низкосимметрична, при этом кристаллохимическая формула таких магнетиков должна содержать как минимум три атома.

Низкосимметричность кристаллической структуры магнетиков типа TlMeX₂(где Me=3d-металл; X=S,Se,Te) [2-7] предопределяет зависимость их магнитных свойств от основных кристаллографических направлений, в случаях, вплоть до возникновения низкоразмерного эффекта, когда спиновая система (магнитная структура) магнетика в парамагнитной области, в определенном температурном интервале находится в квазидвумерном или квазиодномерном магнитном упорядочении (модель Изинга-Гейзенберга) [8-10]. Такие магнитные структуры, в частности, двумерные ферро- и ферримагнетики, обладающие полупроводниковым или полуметаллическим характером электропроводимости, могут быть материалами для спин-электроники.


Учитывая вышеизложенное нами был синтезирован поликристаллический слиток $TICoS_2$ и проведены его рентгенографические, магнитные и электрические исследования.

МЕТОДИКА ПОЛУЧЕНИЯ И РЕНТГЕНОГРАФИ-ЧЕСКИЙ АНАЛИЗ

TlCoS₂ был синтезирован методом наклонной электропечи в эвакуированной до остаточного давления $\sim 10^{-3}$ Па в кварцевой ампуле, при температуре $\sim 1100 {\rm K}$ сплавлением химических элементов, взвешенных в стехиометрическом соотношении. Для предотвращения взрыва ампулы температура печи повышалась до температуры плавления серы (391К) и поддерживалась в течение трех часов. После этого температура печи плавно повышалась до температуры ~1100К, при которой ампула выдерживалась в течение 72 часов. Затем продукт реакции измельчался И синтез повторялся. Синтезированный поликристаллический слиток TlCoS₂ приводился порошкообразное состояние, В спрессовывался и в эвакуированной кварцевой ампуле гомогенизирующему подвергался отжигу при температуре ~600К в течение 480 часов.

Рентгенографический анализ образца $TICoS_2$, специально подготовленного после отжига, проводился при комнатной температуре ($\sim 300 \mathrm{K}$) на дифрактометре ДРОН-3М(СиК $_{\alpha}$ -излучение, $\lambda = 1.5418$ Å, Ni-фильтр, режим-35кВ,10мА). Угловое разрешение съемки составляло $\sim 0.01^{\circ}$. Использовался режим непрерывного сканирования. Углы дифракции определены методом измерений по максимуму интенсивности и ошибка определения углов отражений не превышала $\Delta \theta = \pm 0.02^{\circ}$.

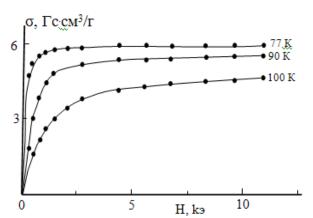
На рис.1 представлена дифрактограмма кристалла $TICoS_2$, на которой в интервале углов $10^{\circ} \le 20 \le 70^{\circ}$ были зафиксированы семь отражений. По этим отражениям были рассчитаны параметры кристаллической решетки $TICoS_2$. Результаты расчета приведены в таблице 1.

Puc.1. Дифрактограмма кристалла $TlCoS_2$.

Расчет дифрактограммы кристалла TlCoS ₂ Т						
№	θ	$1/I_0$	d _{эксп} , Å	d _{расч} , Å	hkl	Параметры элементарной ячейки
1	11°51′	40	3.7532	3.7517	006	
2	13°49′	40	3.2282	3.2275	100.007	Тригональная
3	14°23′	100	3.1035	3.1039	102	a=3.726 Å
4	15°59′	20	2.7992	2.7995	104	c=22.510 Å
5	17°57′	20	2.5013	2.5011	009	z=3
6	20°02′	10	2.2508	2.2510	0010	$\rho_{\rm x} = 6.026 {\rm \Gamma/cm}^3$
7	26°26′	10	1 7320	1 7315	0013	

Изложенное выше позволяет заключить. соединение TlCoS₂, имеет кристаллическую решетку тригональной сингонии, параметры которой гексагональных определяются осях значениями: a=3.726Å, c=22.510Å, с/а~6.04, число формульных единиц в элементарной ячейке z=3, рентгеновская плотность $\rho_x = 6.026 \text{г/см}^3$. При этом можно предположить, что кристалл TlCoS₂ является слоистым соединением, т.к отношение с/а для данного кристалла достаточно большое (~6).

ПРИГОТОВЛЕНИЕ ОБРАЗЦОВ И ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДИКИ ИССЛЕДОВАНИЯ


Намагниченность (σ) соединения $TICoS_2$ измерена на маятниковом магнитометре Доменикалли, а парамагнитная восприимчивость (χ)-методом Фарадея на магнитоэлектрических весах. Образцы для измерений имели цилиндрическую форму с размерами: $h \approx 3$ мм, $d \approx 2.5$ мм. Спонтанная намагниченность (σ_s) при фиксированной температуре определена экстраполяцией намагниченности, измеренной при различных магнитных полях, на нулевое поле.

Электропроводность (σ_3) и коэффициент термоэдс (S) TlCoS₂ исследовались четырехзондовым компенсационным методом. Образец для измерений имел форму параллелепипеда с размерами 7.19 \times 4.83 \times 2.04 мм. Омические контакты создавали путем электролитического осаждения меди на торцах образцов.

Исследования проводились В температурном интервале 77÷400К в квазистатическом режиме, при этом скорость изменения температуры составляла 0.2 К/мин. Во время измерений образцы находились внутри азотного криостата и в качестве датчика температуры применялась дифференциальная медь-константановая термопара, спай которой стационарно закреплялся на кристаллодержателе вблизи образца. Опорный спай термопары стабилизировался при температуре тающего Погрешность измерений намагниченности составляла 1%, парамагнитной восприимчивости -3%, электропроводности -2%, коэффициента термоэдс -4%.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 2 приведена зависимость vлельной от магнитного поля $- \sigma(H)$ намагниченности соединений TlCoS₂ при T=77К. Как видно, зависимость $\sigma(H)$ для $TlCoS_2$ характерна для веществ обладающих спонтанной намагниченностью. Увеличение парапроцесса в зависимости $\sigma(H)$ при 90 и 100К свидетельствует 0 приближении температуры магнитного превращения. Это видно из рис.3, где приведена температурная зависимость намагниченности TlCoS₂. Температура Кюри (T_c) этого соединения определена методом термодинамических коэффициентов [11] и оказалось равной 112К. Магнитный момент насыщения TlCoS₂ при 77К равен 0.36 µ_Б

Puc.2. Зависимость удельной намагниченности $TICoS_2$ от магнитного поля.

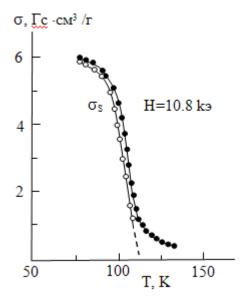
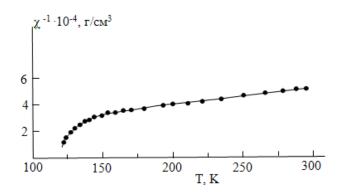
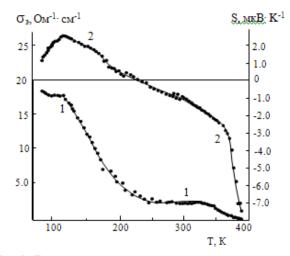



Рис. 3. Температурная зависимость намагниченности TlCoS₂.



Puc.4. Температурная зависимость обратной парамагнитной восприимчивости $TlCoS_2$.

Температурная зависимость обратной парамагнитной восприимчивости - $\chi^{-1}(T)$ TlCoS $_2$ имеет гиперболический вид (рис.4), что является признаком ферримагнетизма. Парамагнитная температура Кюри (T_p) TlCoS $_2$ определена экстраполяцией зависимости $\chi^{-1}(T)$ на ось температур и оказалось равной ~120K.

Из зависимости $\chi^{-1}(T)$ рассчитано экспериментальное значение эффективного магнитного момента соединения $TlCoS_2$, которое оказалось равным 4.6 $\mu_{\text{Б}}$. Теоретическое значение эффективного магнитного момента, рассчитанное с учетом чисто спинового значения магнитного момента трехвалентного иона Со³⁺ равно 4.9 µ_Б. Как видно, наблюдается некоторое отличие экспериментального и теоретического результата, которое говорит о том, что, по-видимому, парамагнитной области ферримагнетика TlCoS₂, B определенном температурном интервале имеется квазидвумерное магнитное упорядочение. Это предположение, подтверждается и в работе [12] авторы, которой исследовали низкотемпературную теплоемкость (в адиабатическом калориметре) TlCoS₂ и делают вывод, что слоистое соединение TlCoS₂ является двумерным ферримагнетиком, магнитная структура которого в парамагнитной области в интервале температур 120-180K находится квазидвумерном упорядочении.

На рис. 5 приведена температурная зависимость электропроводности - $\sigma_3(T)$ и коэффициента термоэдс – S(T) ферримагнетика $TICoS_2$. Как видно, S(T) $TICoS_2$ несколько увеличивается в температурном интервале 77-115K, достигая максимальной величины при $T \approx 115$ K. Затем по мере повышения температуры в окрестности $T \approx 225$ K наблюдается изменение типа проводимости от р- до n- типа. На рис.5 видно, что σ_3 $TICoS_2$ уменьшается по мере увеличения температуры от 77K. В окрестности $T \approx 115$ K на зависимости $\sigma_3(T)$ соединения $TICoS_2$ наблюдается излом, обусловленный рассеиванием р-типа носителей заряда на спиновых неоднородностях [13], образующихся при переходе спиновой системы из магнитоупорядоченного состояния в парамагнитное.

Puc.5. Температурная зависимость электропроводности (1) и коэффициента термоэдс(2) $TICoS_2$.

Отметим, что температура (\sim 115K), при которой на зависимостях $\sigma_3(T)$ и S(T) TlCoS₂ (рис.5) имеет место аномалия, хорошо согласуется с температурой магнитного фазового перехода (\sim 112K) ферримагнетика TlCoS₂ (рис.3).

Изменение типа проводимости в $TlCoS_2$ от р до птипа, связано с делокализацией 3d-электронов в парамагнитной области и участием их в переносе заряда.

Р.Г. ВЕЛИЕВ

Выше $\sim\!\!350{\rm K}$ на зависимости S(T) TlCoS $_2$ наблюдается, резкий спад в сторону отрицательных значений, и это, обстоятельство указывает на полуметаллический характер проводимости в TlCoS $_2$, так как уменьшение электропроводности (рис.5) наблюдается до $T\approx\!250{\rm K}$, затем σ_3 незначительно увеличивается в интервале 250-325 ${\rm K}$. Дальнейшее понижение проводимости TlCoS $_2$ в области 325-400 ${\rm K}$, связано с наступлением собственной проводимости TlCoS $_2$.

ЗАКЛЮЧЕНИЕ

Таким образом, исследования магнитных и электрических свойств слоистого соединения $TICoS_2$ в интервале температур 77-400К показали, что данное соединение является ферримагнетиком и обладает полуметаллическим характером электропроводимости.

Обнаружено влияние магнитного фазового перехода на перенос заряда в слоистом ферримагнетике TICoS₂.

Для того, чтобы однозначно выявить механизм влияния магнитного фазового перехода на перенос заряда в $TICoS_2$ в интервале температур 2-400К планируются исследования магнитных и электрических свойств монокристаллических образцов слоистого ферримагнетика $TICoS_2$ в зависимости от кристаллографических направлений (II и \bot слоям).

Считаю своим долгом выразить признательность доктору физ.-мат. наук, проф. Ю.Г. Асадову за помощь в проведении рентгенографических исследований и индицировки полученных результатов.

- [1]. К.С. Александров, Н.В. Федосеева, И.П. Спевакова. Магнитные фазовые переходы в галлоидных кристаллах. Новосибирск, Наука, 1983, 192 с.
- [2]. A.Kutoglu. Naturwissenchaften B, 61(3), 125 (1974)
- [3]. A.Klepp, H.Boller. Monatsh. Chem. B, 110 (5), 1045 (1979)
- [4]. M.Rosenberg, A.Knulle, H.Sabrowsky, C.Platte. Phys.Chem.Solids, 43 (2), 87 (1982)
- [5]. *Г.И.Маковецкий, Е.И.Касинский.* Неорган. материалы, 20(10), 1752 (1984)
- [6]. Э.М.Керимова, Р.З.Садыхов, Р.К. Велиев. Неорган. материалы, 37(2), 180 (2001)
- [7]. Р.Г.Велиев, Р.З.Садыхов, Ю.Г.Асадов, Э.М.Керимова, А.И. Джаббаров. Кристал-лография, 53(1), 131 (2008)

- [8]. М.А.Алджанов, А.А.Абдуррагимов, С.Г.Султанова, М.Д.Наджафзаде. ФТТ, 49 (2), 309 (2007)
- [9]. *M.Aljanov, M.Nadjafzade, Z.Seidov, M.Gasumov.* Turkish journal of physics, 20 (9), 1071 (1996)
- [10]. Z. Seidov, H.Krug von Nidda, J.Hemberger, A. Loidl, G.Sultanov, E. Kerimova, A.Panfilov. Phys.Rev. B, 65, 014433 (2001)
- [11]. К.П. Белов, А.Н.Горяга. ФММ, 2 (3), 441 (1956)
- [12]. M.A.Aljanov, E.M.Kerimova, S.I.Mekhtieva, M.D.Nadjafzade, S.G.Sultanova, G.M.Akhmedova. Fizika, 8(1), 20(2002)
- [13]. Г.В.Лосева, С.Г.Овчинников. В сб.: Физика магнитных материалов, под ред. В.А. Игнатиченко, Г.А. Петраковского. Новосибирск, Наука, 60 (19)