ГАЛЬВАНОМАГНИТНЫЕ И ТЕРМОЭЛЕКТРИЧЕСКИЕ ЭФФЕКТЫ в p-In_{0,5}Ga_{0,5}Sb, ЛЕГИРОВАННЫХ Zn

С.А. ЗЕЙНАЛОВ, С.Д. ДАМИРОВА, Б. А. ТАИРОВ.

Институт Физики им. академика Г.М. Абдуллаева НАН Азербайджанской Республики 370143, г.Баку, пр. Г.Джавида 33

Zn-la aşqarlanmış $In_{0.5}Ga_{0.5}Sb$ bərk məhlullarının 80÷500K temperatur intervalında Xoll əmsalı R, elektrikkeçirmə əmsalı σ və termoelektik əmsallarının(α_0) temperatur asılılığı tədqiq edilmışdir. Göstərilmışdir ki, yükdaşiyiciların dispersiyası parobolik qanuna tabedir. Müəyyənləşdirilmışdir ki,bütün aşqarlanmış nümunələrdə T<200K-də yükdaşıyıcılar aşqar ionlardan, T>200K-də isə həmdə akustik fononlardan səpiolirlər.

На эквимолярном составе твердых растворов $In_{0.5}Ga_{0.5}Sb$, легированного Zn, в интервале 80÷500К исследованы температурные зависимости коэффициента Холла R, термоэ.д.с. α_0 и электропроводности σ . Определены концентрационная и температурная зависимости эффективной массы дырок. Установлено, что носители заряда валентной зоны $In_{0.5}Ga_{0.5}Sb$ подчиняются квадратичному закону дисперсии. Показано, что во всех легированных образцах при T<200К носители заряда рассеиваются на ионах примеси, а при T>200К значительный вклад вносит и рассеяние на акустических фононах.

With an equimolar composition of $In_{0.5}Ga_{0.5}Sb$ solid solutions doped by Zn in the range of 80 to 500K, temperature dependences of the Hall coefficient R , thermoelectric power α_0 and electrical conductivity σ have been investigated. Concentration and temperature dependences of hole effective mass have been determined. It has been established that charge carriers of the valence band in $In_{0.5}Ga_{0.5}Sb$ obey the quadratic dispersion law. It has been shown that in all doped samples at T<200K charge carriers are scattered by impurity ions, and at T>200K , the scattering by acoustic phonons makes a significant contribution. Comparison experimental and computed data for the concentration dependence of the mobility allows one to suggest that at p>4·10¹⁷cm⁻³ also takes place the mixed mechanism of the charge carrier scattering.

введение.

Антимониды индия и галлия и их твердые растворы привлекают внимание исследователей рядом своих особенностей: низкое значение теплопроводности, малая ширина запрещенной зоны, высокая подвижность и малая эффективная масса электронов, что позволяет применять датчиках ИК-излучения, их в термоэлектрогенераторах, генераторах Ганна и в обеспечивают Холла. Эти соединения датчиках возможность получения твердых растворов на их основе в широком интервале запрещенной зоны : от 0,18 до 0,7 эВ. Представляет также интерес изучение влияния легирования на свойства In_{1-х}Ga_xSb, тем более в отсутствуют литературе практически сведения 0 подобных исследованиях. Нами в [1] для состава $In_{0,5}Ga_{0,5}Sb$, легированного Te, на основе концентрационной зависимости эффективной массы m_n^* было установлено, что электроны в зоне проводимости подчиняются не квадратичному закону дисперсии. Однако, остается не изученной поведение носителей валентной зоны этого же состава; легирование акцепторными примесями позволило бы послелнего судить, об энергетическом спектре носителей заряда валентной зоны и о законе дисперсии дырок в твердом растворе $In_{1-x}Ga_xSb$ при x=0,5.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследованные образцы были получены прямым синтезом исходных материалов: In 99,999%, Ga 99,999%, Sb (0000) и Zn (ч.д.а) в стехиометрическом составе в кварцевой ампуле, откаченной и заполненной спектрально чистым аргоном при давлении 10⁵Па. Сплавление материалов производилось при 600- 700 ⁰C,

затем производилось зонное выравнивание с последовательностью проходов расплавленной зоны шириной 3÷4 мм со скоростью 5,2 и 1 мм/час при температуре 700 °C.

По вышеописанной методике были получены крупноблочные поликристаллические образцы с концентрацией дырок от 4,4 \cdot 10¹⁶ до 1,4 \cdot 10²⁰ см⁻³ (T= 300 K).

Были произведены исследования электрических и термоэлектрических свойств (электропроводности σ , коэффициент Холла R, термо э.д.с α_0) твердых растворов In_{1-x}Ga_xSb (x=0,5), легированных цинком до 1 ат% в интервале температур 80÷500 К.

Рис.1 Зависимость концентрации носителей заряда p от расчетной концентрации примесей атомов цинка N в $In_{0.5}Ga_{0.5}Sb$.

На рис.1 представлена зависимость концентрации дырок p, (рассчитанной по $p = \frac{1}{eR}$) от концентрации атомов примеси, которая определялась согласно выражению :

$$N = \frac{N_A m_{np} \rho_{np}}{m M_{np}} ,$$

где N_A - число Авогадро, m_{np} -масса, ρ_{np} - плотность и M_{np} атомный вес примеси, *m*- масса легированного образца вместе с примесью.

Видно, что зависимость p(N), начиная с p= 4,4·10¹⁶ см⁻³, растет (это обусловлено тем, что вводимая примесь Zn полностью растворяется в In_{0.5}Ga_{0.5}Sb), достигая значения 1,4·10²⁰ см⁻³ при 1 ат% Zn. Температурные зависимости R(T) для всех образцов представлены на рис.2.

Рис.2. Температурные зависимости коэффициента Холла в In_{0.5}Ga_{0.5}Sb.

Видно, что в образцах 1 и 2 коэффициент Холла в примесной области проводимости слабо зависит от *T*, что указывает на превалирование дырочной проводимости, т.е. $p\mu_p^2 >> n\mu_n^2$. Далее, с ростом *T* в этих образцах наступает смешанная проводимость, и происходит смена типа проводимости , что проявляется и на температурной зависимости α_0 (рис.3). Температура инверсии знака *R* и α_o в образцах 1 и 2 смещается в область высоких *T* с ростом концентрации примеси, что заметно на $\alpha_0(T)$. Образцы 3-5 с концентрацией $p = (3,1-140) \cdot 10^{18}$ см⁻³ в интервале температур 80÷500К обладают р-типом проводимости, причем концентрация р от температуры практически не зависит, что проявляется на зависимости α_0 (рис.3, кривые 3÷5).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Исследование кинетических параметров является одним из методов получения сведений о структуре соответствующих зон, а также об эффективной массе носителей заряда. Этот метод был использован нами для вычисления эффективной массы дырок m_p в широком интервале концентраций. В области примесной проводимости при 150К, где на зависимостях R(T) и $\alpha_0(T)$ не происходит смена знака проводимости, по результатам $\alpha_0(T)$ было найдено значение приведенного химического потенциала η^* .

Рис.3. Температурные зависимости термоэдс в In_{0.5}Ga_{0.5}Sb.

Как известно, в случае стандартной зоны для любой степени вырождения носителей заряда коэффициент термоэ.д.с представляется в виде [2]

$$\alpha_{0} = \frac{k_{0}}{e} \left[\frac{F_{r+2}(\eta^{*})}{F_{r+1}(\eta^{*})} - \eta^{*} \right]$$
(1),

где $F_r(\eta^*)$ - однопараметрический интеграл Ферми, $\eta^* = \frac{\eta}{k_0 T}$ - приведенный химпотенциал, r - параметр

механизма рассеяния носителей заряда, k_0 -постоянная Больцмана, e- заряд электрона. Эта формула была использована для определения η^* при высоких концентрациях p>1·10¹⁸ см⁻³, а при малых концентрациях носителей заряда η^* определяется по

$$\alpha_0 = \frac{k_0}{e} \left(r + 2 - \eta^* \right) \, .$$

Вычисление η^* по экспериментальным данным $\alpha_0(T)$ было произведено в предположении рассеяния носителей заряда на оптических фононах (r =1) [1]. Полученные η^* были использованы для расчета эффективной массы дырок m_p^* согласно выражению [2]

$$p = \frac{\left(2m_p^* k_0 T\right)^{\frac{3}{2}}}{3\pi^2 \hbar^3} I^0_{\frac{3}{2},0}(\eta^*,\beta)$$
(2)

где
$$I^{0}_{\frac{3}{2},0}(\eta^{*},\beta)$$
- двухпараметрический интеграл

Ферми,
$$\hbar$$
-постоянная Планка, $\beta = \frac{k_0 T}{E_g}$ - параметр

непараболичности, E_g - ширина запрещенной зоны In_{0,5}Ga_{0,5}Sb, равная 0,408эВ(при T=0K) и 0,333 Эв (при 300K) [3].

Отметим, что поведение R(T) и $\alpha_0(T)$ в исходном и слабо легированном образцах (рис.3, кривые 1и 2) In_{0.5}Ga_{0.5}Sb с концентрациями $p < 10^{17}$ см⁻³ при T < 300K обусловлено участием в проводимости разных сортов и типов носителей тока. Поэтому в образцах с концентрациями 4,4 \cdot 10¹⁶ и 9,5 \cdot 10¹⁶см⁻³ термо э.д.с. α_0 является аддитивной величиной. Участие в проводимости нескольких типов и сортов носителей заряда является причиной сложной структуры валентной зоны In_{0.5}Ga_{0.5}Sb ; так что теория Кейна в данном случае неприменима. Тогда выражение (2) принимает вид

$$p = \frac{4}{\sqrt{\pi}} \left(\frac{2\pi m_p^* k_0 T}{\hbar^2} \right)^{\frac{3}{2}} F_{\frac{3}{2}}(\eta^*), \qquad (3)$$

откуда для эффективной массы дырок можно получить :

$$\frac{m_p^*}{m_0} = \frac{0.323 \cdot 10^{-10}}{T} \left[\frac{p}{F_{3/2}(\eta^*)} \right]^{2/3}.$$

Как видно из рис.2 (кривые 1 и 2), при слабом уровне легирования (p<10¹⁷ см⁻³) на температурных зависимостях кинетических коэффициентов с р-типом наблюдается проводимости инверсия знака проводимости (когда $p\mu_n^2 \le n\mu_n^2$). В In_{0.5}Ga_{0.5}Sb <Zn>, независимо от степени легирования, во всех образцах при T< 300К в проводимости преимущественно участвуют дырки. Так как во всех образцах в интервале Т от 80 до 500 К в проводимости участвуют в основном дырки (в образцах 1и 2 при Т>360К $n\mu_n^2 \ge p\mu_p^2$), то рассчитанный по экспериментальным данным $\alpha_0(T)$ химпотенциал η^* был использован для вычисления m_n^* дырок. На рис.4а для образцов с концентрацией p=3·10¹⁸ и 2.4·10¹⁹ см⁻³ представлены температурные зависимости эффективной массы дырок. Как для невырожденных, так и для вырожденных образцов при 150, 300 и 500К концентрационные зависимости эффективной массы дырок представлены на рис 4б. Из рис.4а и 4б видно, что эффективная масса дырок равна $m_p^* = 0,356 m_0$ и не зависит от Т и р. Это значение m_p^* , вычисленное по данным R(T) и $\alpha_0(T)$, для In_{0,5}Ga_{0,5}Sb значительно отличается от [4] и удовлетворительно хорошо согласуется с данными [5].

В [1] для n- In_{0,5}Ga_{0,5}Sb, легированного Te, была вычислена эффективная масса электронов на дне зоны

проводимости ($m_n^* = 0,025 \text{ m}_0$), а в [5] приведена эффективная масса легких дырок для стехиометрически чистого $\text{In}_{0,5}\text{Ga}_{0,5}\text{Sb}$ ($m_{lh}^* = 0,026m_0$). Эти данные соответствуют друг другу и указывают на то, что обе зоны (зона легких дырок и зона проводимости) непароболичны и зеркальны [6], а носители заряда в них подчиняются не квадратичному закону дисперсии.

Рис.4 а) Температурная зависимость эффективной массы дырок для образцов с концентрацией *p*=3.10¹⁸ и 2,36.10¹⁹ см⁻³ в *p*- In_{0,5}Ga_{0,5}S.
б) Концентрационная зависимость эффективной массы дырок при различных температурах.

Эффективная масса тяжелых дырок в $In_{0,5}Ga_{0,5}Sb$ по данным [5] $m_p^* = 0,372 m_0$ и в 13,5 раза больше эффективной массы электронов и легких дырок. Это значение m_p^* тяжелых дырок значительно выше значения, найденного [4] и на 4% больше нашего рассчитанного значения.

В обеих зонах носители заряда, по видимому, не подчиняются квадратичному закону дисперсии. Эффективная масса тяжелых дырок в $In_{0.5}Ga_{0.5}Sb$ по данным [5] $m_p^* = 0,372 m_0$, что значительно выше значения, найденного [4] и на 4% больше нашего

рассчитанного значения (рис. 4а,б). Отметим ,что в кинетических процессах при T<200 и при T>360К роль легких дырок и электронов пренебрежительно мала, и выполняется условие $p_{hh}\mu_{p_{hh}}^2 << p_{lh}\mu_{p_{lh}}^2$ и $p_{hh}\mu_{hh}^2 \leq n\mu_n^2$, соответственно, что обеспечивает m_p^* (p,T)=const. Наш результат по эффективной массе дырок, охватывая широкий интервал концентраций (4,4÷14000)•10¹⁶ см⁻³ и температур 80÷500К, указывает на то, что носители заряда в валентной зоне In_{0.5}Ga_{0.5}Sb (дырки) подчиняются квадратичному закону дисперсии.

Для выяснения механизма рассеяния дырок были произведены расчеты концентрационной и температурной зависимости подвижности $\mu(\rho)$ и $\mu(T)$ при трех механизмах рассеяния носителей заряда: на ионах примеси, на оптических и акустических фононах, с привлечением значения $m_p^* = 0.356 m_0$. Результаты расчетов $\mu_{\mu o \mu}(T)$, $\mu_{o n}(T)$ и $\mu_{a \kappa}(T)$ на рис.5а сопоставлены с экспериментальными данными $\mu_{_{3\kappa}}(T)$ для образца с концентрацией p=3·10¹⁸ см⁻³. Как видно из рисунка, по зависимости $\mu_{_{2KC}}(T)$ определить более вероятный механизм рассеяния носителей заряда трудно, особенно при высоких температурах, где $\mu \sim T^{-1}$ соответствует двум механизмам рассеяния носителей. Согласно теории [2], при рассеянии носителей заряда на акустических и оптических фононах в случае вырождения носителей, зависимость μ от T имеет вид $\mu_{ak,on} \sim T^{-1}$. Сопоставление экспериментальных результатов $\mu(T)$ с расчетными кривыми подвижности для различных механизмов рассеяния носителей позволяет считать, что до 200К носители заряда рассеиваются на ионах примеси; выше 200К. основываясь на рис.5а, невозможно однозначно оценить вклад рассеяния носителей на оптических и акустических фононах, поскольку для всех $\mu_{on}(T)$, $\mu_{a\kappa}(T)$ и $\mu_{\kappa}(T)$ после 200К подвижность от Т закону $\mu \sim T^{-1}$ Поэтому, изменяется по экспериментальные значения подвижности дырок (при 300K) в *p* - In_{0.5}Ga_{0.5}Sb, легированного Zn, были сопоставлены и с расчетными значениями μ при тех же механизмах рассеяния зарядов в широком интервале концентраций.

Для параболической зоны подвижность дырок вычислена согласно формулам [2]. Параметры M, ρ , v, x и E_0 , входящие в формулы для вычисления подвижности μ , для InSb и GaSb взяты из [7]. При вычислениях $\mu_{a\kappa}$, μ_{on} и μ_{uon} для образцов $In_{0.5}Ga_{0.5}Sb$, легированных Zn, эти параметры были определены методом экстраполяции между соответствующими данными исходных бинарных соединений InSb и GaSb.

Puc.5 а) Температурная зависимость подвижности образца In_{0,5}Ga_{0,5}Sb с концентрацией p=3.10¹⁸ см⁻³ и эффективной массой m_p^{*} = 0,356m₀ (μ_{ac}, μ_{op}, и μ_i – расчетные, точки –эксперимент).
b) Концентрационные зависимость подвижности *p*-In_{0,5}Ga_{0,5}Sb при 300К (μ_{ac}, μ_{op}, и μ_i – расчетные, точки – эксперимент).

На рис.5б приводятся расчетные концентрационные зависимости подвижности дырок при 300К. Отметим, что концентрационные зависимости подвижности носителей на оптических и акустических фононах подчиняются следующим законам (в вырожденном случае): $\mu_{on} \sim p^{1/3}$, $\mu_{a\kappa} \sim p^{-1/3}$ [8]. Из рис.5б видно, что расчетная кривая μ_{on} с ростом p расходится от экспериментальных данных, указывая на уменьшение вероятности рассеяния носителей заряда на оптических колебаниях решетки. При всех концентрациях, как видно из рис.5а.б, наблюдается хорошее соответствие $\mu_{_{\scriptscriptstyle { \mathfrak{I}} \kappa c}}$ и вырождения носителей заряда основным механизмом в интервале концентраций 4,5÷14000·10¹⁶ см⁻³ для р-In_{0.5}Ga_{0.5}Sb до 300К является рассеяние на ионах примеси, а с ростом p в зависимость $\mu(p)$ и $\mu(T)$ равносильно (рис.5б) вносят вклад и тепловые колебания

решетки, причем увеличивается вклад рассеяния на акустических колебаниях. Однако, удовлетворительно хорошее согласие экспериментальных точек $\mu_{_{3\kappa c}}$ с $\mu_{_{CM}}$ позволяет судить о смешанном характере механизма рассеяния носителей заряда в In_{0,5}Ga_{0,5}Sb при 300K, который определяется так [9]:

$$\boldsymbol{\mu}_{\mathcal{CN}} = \left(\frac{1}{\mu_{a\kappa}} + \frac{1}{\mu_{on}} + \frac{1}{\mu_{uon}}\right)^{-1}$$

Таким образом, расчеты показали, что в p- $In_{0.5}Ga_{0.5}Sb$ носители заряда при T < 200K рассеиваются на ионах примеси с заметным вкладом рассеяния при (T>200K) на

акустических колебаниях решетки, а с ростом *Т* рассеяние носителей имеет смешанный характер.

Вышеизложенное дает основание полагать, что эффективная масса дырок не зависит от p и T, т.е. валентная зона твердого раствора $In_{0.5}Ga_{0.5}Sb$ параболична.

ЗАКЛЮЧЕНИЕ

Установлено, что в твердом растворе In_{0,5}Ga_{0,5}Sb носители заряда при T<200К рассеиваются на ионах примеси, а при T>200К вносят вклад и тепловые колебания решетки.

Закон дисперсии дырок для p- In_{0,5}Ga_{0,5}Sb имеет квадратичный характер.

- S.A. Zeynalov, S.A. Aliyev. Structure of the conduction band and electronic properties of Te doped In_{0,5}Ga_{0,5}Sb solid solutions// Turk.J. of Phus. 1996, 20, 5, pp. 477-483.
- [2]. Б.М. Аскеров. Электронные явления переноса в полупроводниках// Москва, "Наука" 1985, с.317.
 [3]. William M. Coderre and J.C.Woolley. Conduction
- [3]. William M. Coderre and J.C.Woolley. Conduction bands of Ga_xIn_{1-x}Sb alloys// Canada. J. of Phys,1969, v.47, №22, pp.2553-2564.
- [4]. M.J.Aubin, M.B. Tomas, E.H. Van Tongerloo and J.C. Wolley. Electron effective mass values in Ga_xIn_{1-x}Sb alloys// Canada.J.Phys., 1969, 47,p.631
- [5]. D.Auvergne, J.Camassel, H.Mathien, A.Joullie.
 Piezoreflectance measurements on Ga_xIn_{1-x}Sb alloys// J.Phys. Chem. Solids. 1974, v.35, №2, pp.133-140.

- [6]. F.F. Aliyev, G.G. Guseynov, G.P. Pashayev, G.M.Aqamirzoeva and A.B. Magerramov. "Electrical and Thermoelectric Properties of Cu_{0,75}Ni_{0,125}FeTe₂" Inorqanic Materials, 2008, v.44, №2, pp.115-120.
- [7]. П.И. Баранский, В.П. Клочков, И.В.Потыкевич. Полупроводниковая электроника // Справочник, " Наукова Думка", Киев, 1975, с.704.
- [8]. Ф.Ф. Алиев. Электрические свойства p-Ag₂Te в βфазе// ФTП, 2003, т.37, в 9., с.1057-1060.
- [9]. Ф.Ф. Алиев, Е.М Керимова, С.А. Алиев. Электрические и термоэлектрические свойства в р-Ag₂Te // ,ФТП 2002, 36, 8, р.932-936