ВЛИЯНИЕ *У*-ОБЛУЧЕНИЯ НА ПРОВОДИМОСТЬ В МОНОКРИСТАЛЛАХ CuGaSe₂

И. КАСУМОГЛУ, И.А. МАМЕДОВА, Г.С. МЕХТИЕВ, Д.Т. ГУСЕЙНОВ

Институт Физики им. академика Г.М. Абдуллаева НАН Азербайджана г.Баку AZ-0143, пр.Г.Джавида, 33 e-mail: <u>ktaira@physics.ab.az</u>

 γ -kvantlarla şüalandırılmış CuGaSe₂ monokristallarında xüsusi müqavimətin temperatur asılılığı tədqiq edilmişdir. 3R/s dozası ilə şüalandırılmanış CuGaSe₂ kristallarında 80÷180K temperatur intervalında sıçrayışlı keçiricilik müşahidə olunur. Akseptor aşqarlarının konsentrasiyası və bor radiusu hesablanmışdır.

Исследована температурная зависимость удельного сопротивления монокристаллов CuGaSe₂ облученных γ -квантами. В необлученном и облученном дозой 3R/s образце CuGaSe₂ в области 80÷180К имеет место прыжковая проводимость. Вычислены концентрации акцепторных примесей, боровский радиус.

Temperature dependence of resistivity in γ -radiated CuGaSe₂ single crystals has been investigated. Jump conduction takes place in γ -radiated by 3R/s doze and unradiated samples in 80÷180K temperature range. Concentration of acceptor impurity and Bohr radius have been calculated.

Монокристаллы $CuGaSe_2$ являются олним ИЗ представителей класса тройных полупроводниковых соединений группы А¹В¹¹¹С^{V1}₂, кристаллизующихся в халькопирита (пр.гр. D^{12}_{2d}). структуре Ширина запрещенной зоны кристалла имеет значение близкое к значению оптимального для материалов солнечных элементов (1,65 эВ при 300 К и 1,77 эВ при 77К). Это соединение перспективно для использования в полупроводниковом приборостроении, в частности для создания фотоэлементов, светодатчиков и др. Ранее нами изучена зависимость тока короткого замыкания от длины волны [1], аномальный эффект Дембера [2], фото э.д.с. [3]., фотовольтаический эффект в монокристаллах CuGaSe₂ [4].

В настоящей работе приводятся результаты исследования влияния γ -облучения на характер проводимости монокристаллов CuGaSe₂ в интервале температур 80÷300К.

Исследованные монокристаллы $CuGaSe_2$ были получены методом газотранспортных реакций. Подробное описание методики получения $CuGaSe_2$ описано в [2]. Полученные образцы имели удельное сопротивление $\rho=10^4$ Om·cm, и р-типа проводимости.

 γ -облучения При изучении влияния на проводимость была использована методика сравнения спектров исходного (до облучения) и после облучения разной дозой *Y*-облучения (3, 18, 60 R/s) образцов в интервале температур 80÷300К. Измерения проводились электрометрическим высокочувствительным вольтметром В7-30, регистрация проводилась при помощи ⁶⁰*Co* КСП-4. Образцы облучались источником энергией кванта 1,25 МэВ.

На рис.(1) представлена зависимость удельного сопротивления от температуры. Видно, что зависимость $\rho \sim (T)$ состоит из двух участков: 1) при повышении температуры удельное сопротивление уменьшается до T~225 К (в исходном образце), а затем наблюдается рост удельного сопротивления. Зависимость $\rho \sim (T)$ в образцах

облученных γ -квантами имеет такой же ход, только точка перегиба смещается в низкотемпературную область.

Из [5-7] известно, что ширина запрещенной зоны CuGaSe₂, насыщена локальными уровнями. Эти уровни активно участвуют в переносе заряда. Как нам известно, заполнение уровней прилипания электронами определяет величину темновой концентрации электронов в полупроводниках типа А^{II}В^{VI}, аналогом которых является CuGaSe₂ [8]. Действительно, согласно [9] холловская подвижность в CuGaSe₂ в области температур 140÷250К растет. С увеличением температуры удельное сопротивление должно уменьшаться. В этой области температур имеет место рассеяние носителей на ионизованных примесях [9]. Из рис.1 видно, что удельное сопротивление исходного образца уменьшается до температур 230 К. В области температур 230÷273 К удельное сопротивление экспоненциально возрастает. Последнее можно объяснить, используя данные о холловской подвижности в CuGaSe₂ в области температур 250÷400 К [9]. В этой области температур Уменьшение подвижность начинает уменьшаться. подвижности ведет увеличению удельного к сопротивления, что и наблюдается в CuGaSe₂ (рис.1). Согласно [9] в области температур выше 280÷300 К в CuGaSe₂ имеет место рассеяние на неполярных оптических фононах $\mu \sim T^{-2}$

Puc.2 Температурная зависимость удельного сопротивления в CuGaSe₂ в координатах Мотта (1-необлученный образец, 2-облученный дозой 3R/s).

После облучения образцов *У*-квантами 3, 18, 60 R/s

характер температурной зависимости удельного сопротивления практически не изменяется. Однако, точка перегиба (переход из низкоомного состояния в высокоомное состояние) смещается в область низких температур. В образцах облученных дозой 18 и 60R/s наблюдается отрицательный участок. Можно предположить, что γ -кванты создают дополнительные дефекты, приводящие к увеличению носителей заряда.

В исходном образце зависимость $\rho \sim f(T)$ в области 90÷180К описывается соотношением Мотта $\rho = \rho_0 \exp(T_0/T)^{1/4}$, т.е. в этой области температур имеет место прыжковая проводимость. Согласно теории прыжковой проводимости удельное сопротивление ρ_3 зависят от концентрации примеси [10]

$$\rho_3 = \rho_{03} \exp[\frac{\alpha}{N_a^{1/3} a_B}]$$
 (1)

(где α =1,70- теоретический коэффициент, N_a-концентрация акцепторной примеси, ρ_{03} -удельное сопротивление при 300К, a_B -характерный боровский радиус в CuGaSe₂). На рис.2 представлена зависимость удельного сопротивления от температуры в координатах Мотта.

[1]. Kasumoglu I., Kerimova T.G., Mamedova I.A. The influence of γ -radiation on electrophysical properties of chalcopyrite structure compounds. TPE-06 3rd International Conference on technical and Physical Problems in power Engineering May 29-31, 2006, Ankara, Turkey, P784-785

По формуле $a_B = 0,53 \cdot 10^{-8} (m_0/m^*) \cdot \mathcal{E}$ (сm), (m^{*}эффективная масса в CuGaSe₂ m^{*}=1,2m₀ [9]) вычислили боровский радиус $a_5 = 6 \cdot 10^{-8}$ см. Логарифмируя (1), получаем

$$\lg \rho_3 = \lg \rho_{03} + 0.43(\frac{\alpha}{N_a^{1/3} a_B})$$
(2)

По этой формуле можно вычислить N_a -концентрацию Из зависимости $\lg \rho \sim f(1/T)$ акцепторной примеси. можно определить значение энергии активации для каждой кривой. Для исходного образца $\rho = 1.5 \cdot 10^5 \text{Ом} \cdot \text{см}$ N_a =1,3·10²¹см⁻³, для облученных дозами 3R/s, 18R/s, 60R/s - $\rho_1 = 7.10^4$ Ом·см, $N_{a_1} = 3, 4.10^{21}$ см⁻³; ho_2 =6·10⁴Ом·см, N_{a_2} =3,4·10²¹см⁻³; ho_3 =5·10⁴Ом·см, $N_{a_{-}}$ =4,9·10²¹см⁻³ соответственно (80÷210К, рис.1). Для исходного образца $\rho = 4.10^5$ Ом·см, $N_a = 4.4.10^{20}$ см⁻³ для облученных дозами 3R/s, 18R/s, 60R/s - ρ_1 =5·10⁵ Ом·см, N_{a_1} =3,7·10²⁰ cm⁻³; ρ_2 =6·10⁵ Om·cm, N_{a_2} =3,2·10²⁰ cm⁻³; ρ_{3} =7·10⁵Ом·см, $N_{a_{3}}$ =3,4·10²⁰см⁻³, соответственно (215÷275К, рис.1). Энергии активации E_a=29,1 meV (для исходного образца), и E₁=32,5meV, E₂=36,7meV, E₂=50meV для облученных (3R/s, 18R/s, 60R/s), соответственно. Полученные значения энергии активации согласуются с данными, приведенными в [5-7].

В монокристаллах CuGaSe₂ р-типа при низких температурах уровень Ферми находится между валентной зоной и уровнем акцепторной примеси, находящийся вблизи валентной зоны.

$$F = \frac{1}{2}(E_v + E_a)$$

Известно, что при больших дозах облучения новые уровни не образуются, увеличивается концентрация электрически активных атомов, создающих акцепторные энергетические уровни.

Экспериментально полученные данные показывают, что как в исходном, так и в облученном γ -квантами (3R/s) образце наблюдается прыжковая проводимость. Из рисунка 1 видно, что в интервале температур 215÷273К в образцах облученных γ -квантами (3;18;60R/s) наблюдается истощение акцепторных уровней.

- [2]. Т.К.Касумов, И.Г.Гасымов, Аномальный эффект Дембера в монокристаллах CuGaSe₂. Доклад АН Азербайджана т. XLVI №3, 1990 стр.19-22.
- [3]. Касумоглу И., Мамедова И.А., Мехтиев Г.С. Фотоэдс в монокристаллах CuGaSe₂, Изв.НАН, 2006 №5, стр. 186-188.

- [4]. Kitayoglu, A.G.Bagirov, Photovoltaic effect in monocrystals CuGaSe₂. Fizika 2002, N2, T.VIII, cTp.18-19
- [5]. *G.Masse and N.Lahlou*, Edge emission of CuGaSe₂, J.Appl.Phys. 51, September 1980, p.1981-1984
- [6]. *G.Masse and E.Redjal*, lattice defect in I-III-V₂ compounds, J. Phys.Chem.Solidi, v.47, 1, pp.99-104, 1986
- [7]. Т.К.Касумов, М.А.Алиев, Ф.И.Мамедов, Фотопроводимость в монокристаллах CuGaSe₂, Нахичеванский науч.Центр АН Азерб.ССР, УДК 621.315.592
- [9]. D.Mandel, R.D. Tomlinson and M.J. Hampehire Electrical properties of CuGaSe₂ single crystals, solid State Communications, 1979, Vol.32, pp.201-204
- [10]. М.Б.Коханюк, Г.Л.Ляху, И.П.Молодин, Е.В.Риесу Электрические свойства фосфида индия, легированного цинком. Фосфид индия в полупроводниковой электронике, Кишинев, 1988, стр.218