ФОТОПРОВОДИМОСТЬ ХАЛЬКОГЕНИДНЫХ СТЕКЛООБРАЗНЫХ ПОЛУПРОВОДНИКОВ СИСТЕМЫ Se95As5, СОДЕРЖАЩИЕ ПРИМЕСИ РЕДКОЗЕМЕЛЬНЫХ АТОМОВ (Sm)

А. И. ИСАЕВ, С. И. МЕХТИЕВА, Р. И. АЛЕКПЕРОВ, Н. З. ДЖАЛИЛОВ

Институт Физики им. академика Г.М. Абдуллаева НАН Азербайджана AZ 1143, Баку, пр. Г. Джавида, 33

Aparılmış tədqiqtlar nəticəsində müəyyən olunmuşdur ki, samarium aşqarlı şüşəvari halkogenid yarımkeçirici (ŞHY) Se₉₅As₅ sistemlərində fotokeçiriciliyin xüsusiyyətləri yüklü defektlər modeli ilə izah olunur (mənfi effektiv korrelyasiya enerjili U⁻ - mərkəzlərlə). D⁺ və D⁻ - mərkəzlərə uyğun gələn elektron halların energetik vəziyyəti (səviyyələr A⁺ və A⁻), onların termik (T⁺ vəT⁻ səviyyələr) və optik keçidlərə (O^+ və O⁻ səviyyələr) uygun gələn həyəcanlaşmış halları (bir elektronlu D⁰ defektlər) müəyyən olunmuşdur.Effektiv korrelyasiya (Uef) və polyaron relaksasiya enerjilərinin (W⁺ və W⁻) qiymətləri (Uef=-0.65 eV; W + = 0,45 eV and W-= 0,45 eV) təyin olunmuşdur.

В результате проведенных исследований установлено, что особенности фотопроводимости ХСП системы Se₉₅As₅ содержащие примеси РЗЭ (самария) удовлетворительно объясняется в рамках модели собственных заряженных дефектов (U⁻ - центры с отрицательной эффективной энергией корреляции электронов). Установлено энергетическое положение электронных состояний в запрещенной зоне соответствующий D⁺ и D⁻ - центров (уровни A⁺ и A⁻), их возбужденному состоянию (D⁰- дефекты содержащие одного электрона), соответствующие термическим (уровни T⁺ и T⁻) и оптическим переходам (уровни O⁺ и O⁻). Определены такие важные параметры модели, как величина эффективной корреляционной энергии U_{3ф} для VAP D⁺ и D⁻ и энергии поляронной релаксации W⁺ и W⁻, которые составляют: U_{3ф} = -0,65 эВ ; W⁺ = 0,45 эВ и W⁻ = 0,45 эВ.

As a result of the lead researches it is established, that features of photoconductivity CGS of system $Se_{95}As_5$ containing impurity REE (Sm) well speaks within the limits of model own charged defects (U⁻--the centers with negative effective energy of correlation electrons). Power position of electronic conditions in the forbidden zone corresponding D⁺ and D⁻ the centers (levels A⁺ and A⁻), to their raised condition (D₀-defects containing one electron) corresponding thermal (levels T⁺ and T⁻) and to optical transitions (levels O⁺ and O⁻) is established. Such important parameters of model as for VAP D⁺ and D⁻ and D⁻ and D⁻ and W⁻ which make sizes of effective correlation energy U_{ef} are certain: U_{ef}=-0.65 eV; W + = 0.45 eV and W-= 0.45 eV

Халькогенидные стеклообразные полупроводники (ХСП), обладают рядом свойств присущих только этим материалам, в частности, обладают способности изменять свою электрические, фотоэлектрические и оптические свойства под действием света, что делает материала перспективными указанного для использования в различных устройств микро и оптоэлектронике[1-3]. Преумищество ХСП материалов обусловлено еще с тем, что у них большинство электронных свойств контролируется заряженными собственными дефектами (U⁻- центрами с отрицательной эффективной энергией корреляции электронов) [2,4], концентрация которых можно контролировать введением примесьных атомов проявляющиеся в виде заряженных что позволяет центров, существенно улучшить параметры переноса электрического заряда И фоточувствительности[5-10].

ХСП содержащие редкоземельные элементы (РЗЭ) в качестве примесей больше всего привлекает интерес исследователей[11-14]. Это связаны с тем обстоятельством, что примеси РЗЭ проявляются, в основном, в виде заряженных центров и должны влиять на концентрацию U⁻ - центров, что в свою очередь должны отражатся на электронные свойства. Кроме этого введением указанных примесей в запрещенной зоне образуются состояния, обусловленные 4f ХСП состояниями ионов РЗЭ, и в этом случае оптическая ширина запрещенной зоны ХСП будет перекрывать по энергии максимально возможное число переходов, разрашенных для иона РЗЭ (Sm), что приводит к существенному оптических, изменению его фотоэлектрических и электрических свойств [15,16]. Понимания механизмов электронных процессов, ответственных за выше перечисленные особенности

требует исследования процессов генерации и рекомбинации носителей заряда, что очень важно для проверки перспективность материала для оптоэлектронных целей.

С целью получения информация о механизме процессов генерации и рекомбинации носителей заряда, в частности, о роли локальных электронных состояний в этих процессах проведены исследования стационарной фотопроводимости ХСП системы $Se_{95}As_5$ содержащие примеси самария. Выбор указанного состава обусловлен тем обстоятельством, что он как по структуре, так и по электронным свойствам более стабилен [17].

МЕТОДИКА ЭКСПЕРИМЕНТА И ИЗГОТОВЛЕНИЯ ОБРАЗЦОВ

Синтез ХСП состава Se₉₅As₅ примесью самария осуществлялся сплавлением соответствующих количеств химических элементов особой чистоты в вакуумированных кварцевых ампулах при температурах выше 900°С во вращающейся печи с последующим охлаждением в режиме выключенной печи. Примесь вводилась в процессе синтеза, концентрация ее лежала в пределах 0,001÷ 1ат %.

Образцы для измерений имели структуру типа «сендвич» и представляли собой слои толщиной 1- 5 мкм, приготовленные термическим испарением в вакууме при остаточном давлениии 10^{-6} мм рт. ст. В качестве подложек исползовались полированные стеклянные подложки, на которые предварительно наносился нижний электрод из алюминия или In_2O_3 . Верхним электродом служила полупрозрачная пленка из алюминия, напыленная в вакууме на слой исследуемого материала. Химический состав в пленки принимались,

так же как и в навеске. Температура образцов контролировалась с помощью термопары.

Спектральная зависимость стационарной фотопроводимости измерено в интервале 1,0 – 2,4 эв энергий падающего фотона. Измерения фото и темнового тока проводились электрометрическим усилителем У5-11. Данные стационарной фотопроводимости нормированы на постоянное число фотонов при каждом значении энергии.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Спектральное распределение стационарной фотопроводимости в ХСП системе

 $Se_{95}As_5$ содержащей примеси самария показано на рис. 1а. На рис. 1б показаны кривые спектрального распределения стационарной фотопроводимости XCП системы $Se_{95}As_5$ в отсутствие (кр.1) и при наличии (кр.2) светового возбуждения из области фундаментального поглощения. На рис.2 представлено спектральное распределение коэффициента оптического поглощения.

Рис. 1 Спектральное распределение стационарной фотопроводимости ХСП системе Se₉₅As₅ в содержащей самария кривые примеси (a); спектрального распределения стационарной фотопроводимости ХСП системы Se95As5 в отсутствие (кр.1) и при наличии (кр.2) светового возбуждения из области фундаментального поглощения (b)

Сравнение рис.1 и 2 показывает, что с ростом энергия падающего фотона фототок возрастает от нуля и проходит через максимум при определенном умеренном поглощении и снова падает, тогда как коэффициент поглощения продолжает расти. Такое поведение спектрального распределения, по-видимому, обусловлено тем, что при больших значениях энергий светового фотона генерация носителей ограничивается узким поверхностным слоем образца и ток определяется поверхностной рекомбинацией.

Как видно из рис.16 спектральное распределение стационарной фотопроводимости ХСП системы Se₉₅As₅ имеет три излома при энергиях падющего фотона 1,3; 1,7; 1,8 и 1,9 эВ, причем излом при 1,3 эВ ярко проявляются в образцах, подвергнутых световому возбуждению (рис. 16).

С целью установления механизма рекомбинации исследованы температурные зависимости фототока и люксамперные характеристики. Показано, что при высоких температурах фототок экспоненциально уменьщается с ростом температуры по закону I_{ph} ~ $\exp(\Delta E_m / kT)$, где $\Delta E_m = 0.25$ эВ и линейно увеличивается с ростом интенсивности падающего света, соответствует мономолекулярному режиму что рекмбинации. При уменщении температуры фотопроводимость проходя через максимум экспоненциально уменьщается по закону $I_{ph} \sim exp(-\Delta E_b/$ kT), где $\Delta E_{\rm b} = 0.30$ эВ. В этом участке фтоток пропорционален корню квадратному из интенсивности падающего света, т. е. реализуется биомолекулярный режим рекомбинации.

[18-19], Согласно такие особенности фотопроводимости объясняется существованием в запрещенной зоне полупроводника два набора дискретныых уровней захвата, расположенные в разных Ферми. Предпологая, что сторонах от уровня рекомбинация происходит между носителями, захваченными на один из наборов уровней в щели, и свободными носителями в зонах, для энегрия активции получены формулы:

$$\Delta E_{\rm m} = (E_{\rm D} - E_{\rm V}) - E \sigma,$$

$$\Delta E_{\rm b} = (E_{\rm A} - E_{\rm V}) / 2$$
(1)

где E_D и E_A – энергии донороподобных и акцептороподобных уровней выше и ниже уровня Ферми, E_V – энергия края валентной зоны и $E \sigma$ - энергия актиавции темновой проводимости. При $E \sigma$ = 1 эВ вычислены энергии состояний в щели относительно валентной зоны и получены значения: $E_D - E_V = 1.25$ эВ и $E_A - E_V = 0,60$ эВ.

Как видно из рис. 1а по сравнению с аморфным фоточувствительность ХСП системы Se₉₅As₅ селеном высокая при энергиях падющего фотона меньше, чем оптическая ширины запрещенной зоне (Е_σ), а низкая при превышающих Eg. Такое поведения энергиях, фотопрводимости В низкоэнергетической И высокоэнергетической областях спектра связано с интнесивности оптических переходов в различием указанных областях. Действительно нами установлено что концентрация локальных состояний [15-16], увеличивается при добавки в селен мышяка, что приводит к росту интенсивности переходов между зоной уменьшение и локализованные состояния. А фоточувствительности при энергиях падающего фотона больше, чем Е_g, по- видимому, связано с увеличением интенсивности процессы захвата свободных носителей заряда ловушками, концентрация которых больше чем в аморфном селене.

фотопроводимости Наблюдаемые особенности рамках удовлетворительно обясняется в модели заряженных собственных дефектов (U⁻ - центры с отрицательной эффективной энергией корреляции электронов) [4], гипотезы о существовании которого впервые выдвинуты в работе [20] и позволяет определить некоторые параметры указанных дефектов. Дефекты такого типа возникают вследствие нарушения основного состояния химической связи, т.е. изменяется координационное число, валентность и заряд атома. Согласно [20], вследствие поляронного искажения двукратно заполненных и решетки комбинация незаполненных состояний энергетически более выгодно, чем однократно заполненные состояния. Авторы [21-22] предположили, что эти состояния по существу должны быть заряженными оборванными связями D⁺, D⁻ обычное возбужденное состояние которых есть D⁰. Дальнейшее развитие и конкретизация модели, принадлежат авторам работ [23-24],согласно которых пары заряженных дефектов являются трехкратно и однократно координированные атомы халькогена С⁺₃ и С₁ Авторы [24] для таких дефектов ввели определение пары с переменной валентностью (Valence alternation pair VAP). Благодаря отрицательному знаку корреляционной энергии состоянии с двумя электронами (D⁻) и с двумя дырками (D⁺) более выгодно чем с одним электроном или дыркой. Поэтому [20-24], U - центры представляют собой заряженные дефекты D⁺ и D. которые образуются из исходных нейтральных дефектов D^0 по реакции

$$2D^0 \to D^+ + D^- \tag{2}$$

Предполагается, что роль D⁻ - центров в нашем случае играют центры C₁⁻ и P₂⁻, связанные оборванными связями селена и атомами мышьяка с нарушенной координацией, соответственно. При введении в XCП положительно заряженной примеси A⁺ (предпологается, что атомы самария, в основном, проявляются в виде положительно заряженного иона Sm³⁺) должен выполняться закон электронейтральности:

$$[A^{+}] + [D^{+}] = [D^{-}]$$
(3)

Согласно закону действующих масс количественное соотношение между концентрациями заряженных центров определяется выражением:

$$[D^+] [D^-] = [D^0]^2 = const$$
 (4)

Согласно (3) и (4) при введении положительно заряженной примеси A^+ концентрация D^+ - центров должна уменьщаться, а концентрации D^- - центров увеличиваться, что должно влиять на спектральное распределение фотопроводимости.

На рис. 3 представлены энергетические диаграмы электронных состояний, соответствующие D^+ и D^- -центрам, предложенным в работе [25], где численные значения энергия соответствуют результатам наших исследований.

Рис.3 Энергетические диаграммы электронных состояний соответствующие D⁺ и D⁻-центрам в ХСП системе Se₉₅As₅ -содержащие примеси самария.

Уровень А⁺ и А⁻ обозначают основное состояния заряженных дефектов, а Т и О возбужденное состояния для термических и оптических переходов. Линии E_V и E_c показывают край валентной зоны и зоны проводимости. Как видно из рис.1а при больших концентрациях примеси самария (больше чем 0,1 ат%) особенности спектрального распределения фотопроводимости при 1,7 эВ ослабляется, а при 1,8 и 1,9 эВ усиливается. Если учитывать, что примесь самария проявляется в виде положительно заряженных ионов и будут способствовать плотности состояний уменьшению положительно заряженных дефектов D⁺ и увеличению концентрации отрицательно заряженных дефектов D⁻, то излом при 1,7 эВ следует приписывать как результат перехода между валентной зонной и уровнем А⁺, а изломы при 1,8 и 1,9 ЭВ переходам с уровня А в зону проводимости. Если учитывать численные значения оптической ширины запрещенной зоны 1, 95 эВ [16], то уровень А будет расположены при энергией 0,15 эВ, а уровень Т⁻ при 0,60 эВ. Энергетические положения уровней $T^{\scriptscriptstyle +}$ и $A^{\scriptscriptstyle +}$ соответствуют значениям 1,25 и 1,7 эВ. При освещения образцов светом из области собственного поглощения (энергия фотона больше чем E_g) большинство образуемых электронов и дырок захватывается дефектами D⁺ и D⁻ ,вследствие чего большинство дефектов переходит в возбужденное состояние, т.е. увеличивается концентрация нейтральных сильно дефектов (D⁰ состояний). Исходя из этих соображений широкий пик наблюдаемый в образцах ХСП системы Se95As5 при энергии 1,3 эВ можно трактовать как результат перехода либо с уровня O^+ на E_c , либо с E_V на уровень О (либо обоим типам переходов). Этот результат так же подтверждается обнаружением фотоиндуцированного поглощения в указанной области спектра[16]. Таким образом, модель пар с переменной валентностью (модель VAP) позволяет интерпретировать

большинство особенностей фотопроводимости XCП системы $Se_{95}As_5$.

Полученные результаты так же позволяют определить такие важные параметры модели, как величина эффективной корреляционной энергии $U_{\rm эф}$ для VAP D^+ и D^- (как разности энергий T^- – T^+) так и энергии поляронной релаксации W^+ (энергетический интервал между уровнями A^+ и T^+) и W^- (интервал между A^- и T^-), которые составляют:

 $U_{9\phi} = -0.65 \ 9B$; $W^+ = 0.45 \ 9B$ $\mu W^- = 0.45 \ 9B$.

Надо отметить, что влияние примесей самария в малых концентрациях (0,001 и 0,005 ат%) не происходит в рамках модели заряженных собственных дефектов. Такое же отклонение было наблюдено при исследовании влияния примесей галогенов (хлора и брома) на дрейфовую подвижность ХСП системы $Se_{95}As_5$ [6-7], и обяснены с химической активностью указанных примесей в малых концентрациях, вследствие чего образуются соединения как с селеном, так с мышьяком. В результате этого уменьшается концентрация D^+ и D^- центров. Предпологается, что примесе P3Э в малых

- [1]. Электронные явления в халькогенидных стеклообразных полупроводниках. Отв. ред. К. Д. Цендин, Санкт – Петербург, с. 320, (1996).
- [2]. Keiji Tanaka. Nonlinier Optics in Glasses: How can we analyze?// Book of Abstracts 7th Int.Conf. On Solid State Chemistry. Czech Rep., Pardubice, p. 60, (2006).
- [3]. A. Zakery, S Elliott, R. J. Non-Cryst. Sol., 330, 1, (2003).
- [4]. Н. Мотт., Э. Девис. Электронные процессы в некристаллических веществах, М. Мир, 1982.
- [5]. А.И. Исаев, Л.П. Казакова, Э.А. Лебедев, С. И Мехтиева, И.И Ятлинко, «Способ получения халькогенидных стеклообразных полупроводников на основе Se – As».А.С.№ 1512015. Москва,(1989).
- [6]. Л.П. Казакова., Э.А. Лебедев, А.И. Исаев, С. И. Мехтиева, Н. Б. Захарова, И.И. Ятлинко, ФТП, 27, 959 (1993).
- [7]. L. P.Kazakova, E. A. Lebedev, N. B. Zakharova., I. I Yatlinko., A.I Isayev., M S. I., J. of Non – Cristalline solids 167, 65, (1994).
- [8]. A. I. Isayev, S.I. Mekhtiyeva, A. K. Rzayev, J.Turkish of Physics, 22, 263, (1998).
- [9]. S.I. Mekhtiyeva, N.I Ibraqimov, A. I. Isayev, V. Z. Zeynalov, E. A Mamedov, J. Turkish of Physics, 26, 449, (2002).
- [10]. А.И. Исаев, Л.П. Казакова, Э.А. Лебедев, С.И. Мехтиева, И.И. Ятлинко « Локальные состояния, контролирующие перенос носителей заряда в стеклообразных полупроводниках системами Se – Аs и влияние примесей галогенов». Сб.: Дефекты в полупроводниках. Санкт – Петербург, с. 61, (1992).
- [11]. S.G. Bishop, D. A. Turnbuli, B. G. Aitken, J. of Non Cristalline solids, 266, 867(2000).
- [12]. H. Tamorin, M. T. Araujo, E. A. Gouveia, A.S. Gouveia Neto, J. A. Medeiros Neto, Sombra A.S.B. J. Luminese 78, 271(1998).

концентрациях в XCП системы $Se_{95}As_5$ себя ведут подобным образом.

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований установлено, что особенности фотопроводимости ХСП системы содержащие примеси РЗЭ (самария) Se95As5 удовлетворительно объясняется в рамках модели собственных заряженных дефектов (U⁻ - центры с энергией корреляции отрицательной эффективной электронов). Установлено энергетическое положение электронных запрешенной состояний в зоне сооветствующий D⁺ и D⁻ - центров (уровни A⁺ и A⁻), их возбужденному состоянию (D⁰- дефекты содержашие одного электрона), соответствующие термическим (уровни T^+ и T^-) и оптическим переходам (уровни O^+ и O^-). Определены такие важные параметры модели, как величина эффективной корреляционной энергии U_{эф} для VAP $D^+ u D^- u$ энергии поляронной релаксации $W^+ u W^$ которые составляют: $U_{3\phi} = -0.65 \text{ }_{3}B$; $W^+ = 0.45 \text{ }_{3}B$ и $W^{-} = 0.45 \text{ }9B.$

- [13]. H.Harada, J.Tanaka Keiji. Non-Cryst.Sol., 246,189 (1999).
- [14]. С. А. Козюхин., А. Р. Файрушин, Э. Н. Воронков ФТП, 39, 1012 (2005).
- [15]. A.I. Isayev, S.I. Mekhtiyeva, R.I. Alekperov, N.Z. Jalilov, G.K. Akberov Space charge limited currents limited in chalcogenide glass-like semiconductors of Se₉₅As₅ system with Sm Impurity, Chalcogenide Letters vol.5.№1 January 2008,p.11
- [16]. А.И. Исаев, С.И. Мехтиева, Н.З. Джалилов, Р.И. Алекперов, В.З.Зейналов The optical absorption of S_{e95}A_{s5} system doped by atoms of samarium, J. of Optoelectronics and Advanced Materials –RC p.368-372 vol.1 ISS .8 (2007)
- [17]. А.И. Исаев, Л.П Казакова, Э.А. Лебедев, С. И.Мехтиева, И.И. Ятлинко. «Способ получения халькогенидных стеклообразных полупроводников на основе Se – As». А.С.№ 1512015. Москва(1989).
- [18]. C. Main, A. E Owen, Electronic and Structural Properties of Amorphous Semiconductors. Ed. P. G. LeComber. J., Mort. London: Academic Press, 17, 11 (1973).
- [19]. J. G. Simmons, G. W. Taylor. J. C: Solid State Phys. 7, 3051 (1974).
- [20]. P. W. Anderson, Phis. Rev. Lett., 34, 953 (1975).
- [21]. R.AStreet, N.F.Mott. Phis.Rev. Lett., 35, 1293 (1975).
- [22]. N. F. Mott, E. A. Davis, R. A. Street, Phil. Mag. B, 32, 961 (1975).
- [23]. *M. Kastner, D. Adler, H. Fritzsche* Phis. Rev. Lett., 37, 1504 (1976).
- [24]. H. Fritzsche, M. Kastner, Phil.Mag.B,37, 285(1978).
- [25]. S. R. Elliot, Physics of Amorphous Materials, 2nd ed. Longman Sci. Tech. Harlow (1990).