ЧАСТОТНАЯ ДИСПЕРСИЯ ДИЭЛЕКТРИЧЕСКИХ СВОЙСТВ МОНОКРИСТАЛЛОВ (TlGaS $_2$) $_{1-x}$ (TlInSe $_2$) $_x$

С.Н. МУСТАФАЕВА

Институт Физики им. академика Г.М. Абдуллаева Национальной Академии Наук Азербайджана Az-1143, Баку, пр.Г.Джавида ,33 E-mail: solmust@gmail.com

Laylı (TlGaS₂)_{1-x}(TlInSe₂)_x (x = 0; 0,005; 0,02) monokristallarda dielektrik xarakteristikaların tezlikdən asılılıqları və f = $5 \cdot 10^4$ –3,5 $\cdot 10^7$ Hs tezlik diapazonunda laylara perpendikulyar istiqamətdə ac-keçiriciliyi (σ_{ac}) tədqiq edilmişdir. Müəyyən edilmişdir ki, $5 \cdot 10^4$ –3 $\cdot 10^7$ Hs tezlik sahəsində (TlGaS₂)_{1-x}(TlInSe₂)_x kristallarda yükün köçürülməsi, Fermi səviyyəsi yaxınlığında lokalizə olunmuş hallar üzrə, sıçrayış mexanizmi ilə baş verir. Bu səviyyələrin sıxlığı (N_F), sıçrayışların orta vaxtı (τ) və sıçrayışların məsafəsi (R) qiymətləndirilmişdir. (TlGaS₂)_{1-x}(TlInSe₂)_x monokristalların tərkibinin onların dielektrik əmsallarına təsiri təyin edilmişdir.

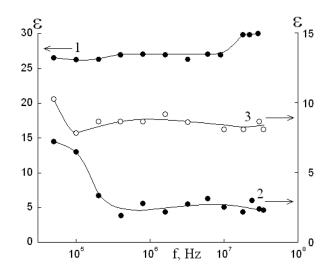
В слоистых монокристаллах ($TIGaS_2$)_{1-х}($TIInSe_2$)_х (x=0; 0,005; 0,02) изучены частотные зависимости диэлектрических характеристик и ас-проводимости (σ_{ac}) поперек слоёв в частотном диапазоне $f=5\cdot10^4-3\cdot5\cdot10^7$ Гц. Обнаружено, что в частотной области $5\cdot10^4-3\cdot10^7$ Гц в кристаллах ($TIGaS_2$)_{1-х}($TIInSe_2$)_х имеет место прыжковый механизм переноса заряда по локализованным вблизи уровня Ферми состояниям. Оценены: плотность (N_F) этих состояний, среднее время (τ) и расстояние (τ) прыжков. Изучено влияние состава монокристаллов (τ) (τ) и и их диэлектрические коэффициенты. Установлено, что с ростом содержания кобальта τ 0 возрастает, а τ 1 и τ 1 уменьшаются.

Frequency dependence of the dissipation factor $\tan\delta$, the permittivity ϵ , and the ac conductivity σ_{ac} across the layers in the frequency range $f = 5 \cdot 10^4 \div 3.5 \cdot 10^7$ Hz were studied in layered $(TIGaS_2)_{1-x}(TIInSe_2)_x$ (x=0; 0,005; 0,02) single crystals. It was established that the mechanism of ac charge transport across the layers in $(TIGaS_2)_{1-x}(TIInSe_2)_x$ single crystals in the frequency range from $5 \cdot 10^4$ to $3 \cdot 10^7$ Hz is hopping over localized states near the Fermi level. The Fermi level density of states (N_F), the mean hop distance (R) and time (τ) has been estimated.

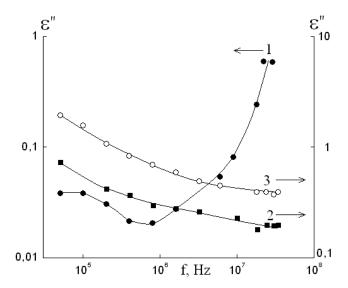
Поиск новых материалов на основе тройных полупроводников типа $TIA^{III}X_2^{VI}$ (A = In, Ga; X = S, Se, Te) остается актуальной и практически значимой задачей. Эти кристаллы и твердые растворы на их основе перспективны для применения в нелинейной оптике, лазерной технике, в направлении создания приемников для видимой и ИК-областей спектра, рентгендетекторов и других преобразователей.

Исходные тройные соединения TlInSe₂ и TlGaS₂ были синтезированы из элементов Tl, Ga, In, S, Se чистоты не менее 99,99%. Для синтеза системы TlInSe₂-TlGaS₂ данные тройные соединения служили исходными материалами, которые были взяты в стехиометрических соотношениях и помещены в откачанные до давления 10-³Па и запаянные графитизированные кварцевые ампулы. Режим синтеза сплава выбирался на основе температур плавления исходных материалов. Ампулы с веществом нагревались до температуры на 30-40°C выше указанных температур и выдерживались при этой температуре 5-6 часов, затем температуру в печи медленно понижали до значения приблизительно 2/3 Тплавл и отжигали образцы в течение 250 ч. Затем методом Бриджмена выращивались монокристаллы твердых растворов ($TlGaS_2$)_{1-x}($TlInSe_2$)_x.

Представляло интерес изучение диэлектрических свойств указанных материалов и влияния состава твердых растворов на эти свойства.


Измерения диэлектрических свойств (тангенса угла диэлектрических потерь $tg\delta$ и диэлектрической проницаемости ϵ) монокристаллов ($TIGaS_2$)_{1-x}($TIInSe_2$)_x (x=0; 0,005; 0,02) на переменном токе произведены резонансным методом с помощью куметра TESLA BM 560. Диапазон частот переменного электрического поля составлял $5\cdot10^4 \div 3,5\cdot10^7 \Gamma$ ц.

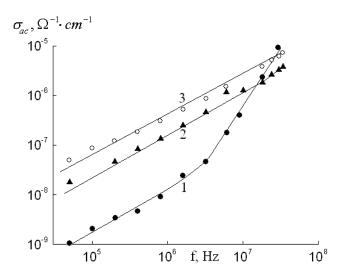
Монокристаллические образцы $(TlGaS_2)_{1-x}(TlInSe_2)_x$ для электрических измерений были изготовлены в виде плоских конденсаторов, плоскость которых была перпендикулярна кристаллографической С-оси кристаллов. В качестве электродного материала использована серебряная паста. Толщина образцов из $(TlGaS_2)_{1-x}(TlInSe_2)_x$ составляла 100–150 мкм, а площадь ~5·10⁻²см². Все диэлектрические измерения обкладок монокристаллических образцов были проведены при 300K. Воспроизводимость положения составляла по емкости $\pm 0,2$ пкф, а по добротности $\pm 1,0$ 1,5 деления шкалы. При этом наибольшие отклонения от средних значений составляли 3–4% для ε и 7% для tgδ.


В области частот $5\cdot10^4$ – $3,5\cdot10^7$ Гц измерена электрическая емкость образцов ($TIGaS_2$)_{1-x}($TIInSe_2$)_x. По значениям емкости образцов при различных частотах рассчитаны значения диэлектрической проницаемости (рис. 1). Если в $TIGaS_2$ в указанном диапазоне частот значения є изменялись от 26 до 30, то в ($TIGaS_2$)_{1-x}($TIInSe_2$)_x значения є варьировались от 2 до 10, т.е. в них диэлектрическая проницаемость существенно уменьшалась по сравнению с є для $TIGaS_2$. Кроме того, в ($TIGaS_2$)_{1-x}($TIInSe_2$)_x наблюдалась более значительная диэлектрическая дисперсия. На рис. 2 показаны частотные зависимости коэффициента диэлектрических потерь (ϵ) изученных монокристаллов.

Изучены также частотные зависимости ас-проводимости монокристаллов (TlGaS₂)_{1-x}(TlInSe₂)_x при 300К (рис. 3). Ас-проводимость (TlGaS₂)_{1-x}(TlInSe₂)_x существенно превышала ас- проводимость TlGaS₂ (более чем на один порядок), так при $f = 5 \cdot 10^4 \Gamma$ ц σ_{ac} для TlGaS₂ составляла $10^{-9} \text{Om}^{-1} \cdot \text{cm}^{-1}$; для $x = 0{,}005$ $\sigma_{ac} = 2 \cdot 10^{-8}$ Om $1 \cdot \text{cm}^{-1}$, при $x = 0{,}02$ $\sigma_{ac} = 5 \cdot 10^{-8}$ Om $1 \cdot \text{cm}^{-1}$ [1, 2].

С.Н. МУСТАФАЕВА

Puc. 1. Частотные зависимости диэлектрической проницаемости монокристаллов: $1 - \text{TIGaS}_2$; $2 - (\text{TIGaS}_2)_{0.995}(\text{TIInSe}_2)_{0.005}$; $3 - (\text{TIGaS}_2)_{0.98}(\text{TIInSe}_2)_{0.02}$.



Puc. 2. Частотная дисперсия $\epsilon^{''}$ монокристаллов (TlGaS₂)_{1-x}(TlInSe₂)_x при различных x: 1-0; 2-0.005; 3-0.02.

В области частот $f=5 \cdot 10^4 - 3.0 \cdot 10^7 \Gamma$ ц в монокристаллах $(TlGaS_2)_{1-x}(TlInSe_2)_x$ ас-проводимость изменялась по

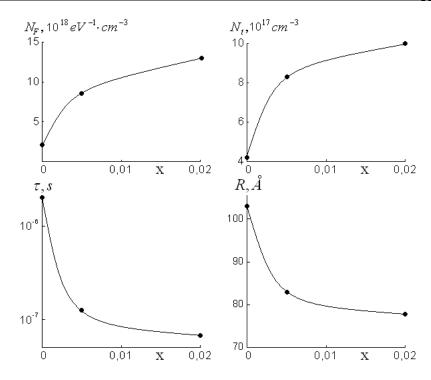
закону $\sigma_{ac} \sim f^{0.8}$, а при дальнейшем увеличении частоты зависимость σ_{ac} от f становилась суперлинейной.

зависимость σ_{ac} от f становилась суперлинейной. Наблюдение участка $\sigma_{ac} \sim f^{0.8}$ на кривых σ_{ac} (f) свидетельствует о том, что в указанном диапазоне частот проводимость монокристаллов ($TIGaS_2$)_{1-x}($TIInSe_2$)_x обусловлена прыжками носителей заряда между локализованными вблизи уровня Ферми состояниями.

Puc. 3. Частотные зависимости ас-проводимости монокристаллов (TlGaS $_2$) $_{1-x}$ (TlInSe $_2$) $_x$ при 300К: 1 – 0; 2 – 0.005; 3 – 0.02.

По экспериментально найденным значениям σ_{ac} (f) вычислили плотность состояний на уровне Ферми (N_F). Теория прыжковой проводимости на переменном токе [3] позволила также оценить среднее время (т) и расстояние (R) прыжков. Определена концентрация глубоких ловушек (N_t), ответственных за ас-проводимость в перечисленные изученных монокристаллах. Bce параметры монокристаллов $(TlGaS_2)_{1-x}(TlInSe_2)_x$ определенные из диэлектрических измерений на переменном токе, сведены в таблице.

Из таблицы и рис. 4 видно, что с ростом содержания $TIInSe_2$ в кристаллах $(TIGaS_2)_{1-x}(TIInSe_2)_x$ N_F возрастает, а τ и R уменьшаются.


Таблица.

Параметры локализованных состояний в монокристаллах ($TlGaS_2$)_{1-х}($TlInSe_2$)_x

114p41 114p4 114p4				
Состав кристалла	N_F , $_{9}B^{-1}$, $_{6}cm^{-3}$	τ, c	R, Å	N _t , см ⁻³
TlGaS ₂	$2,1\cdot10^{18}$	2.10-6	103	$4,2\cdot10^{17}$
$(TIGaS_2)_{0,995}(TIInSe_2)_{0,005}$	$8,5\cdot10^{18}$	1,3·10 ⁻⁷	83	$8,3 \cdot 10^{17}$
$(TIGaS_2)_{0,98}(TIInSe_2)_{0,02}$	$1,3\cdot10^{19}$	6,7.10-8	78	10^{18}

На рис.4 приведены зависимости N_F , τ , R и N_t монокристаллов твердых растворов ($TlGaS_2$)_{1-x}($TlInSe_2$)_x от состава.

$\underline{ \text{ЧАСТОТНАЯ ДИСПЕРСИЯ ДИЭЛЕКТРИЧЕСКИХ СВОЙСТВ МОНОКРИСТАЛЛОВ (TIGaS_2)_{1-s}(TlinSe_2)_s}$

 $\it Puc.~4$. Зависимости N_F , τ , R и N_t монокристаллов (TlGaS₂)_{1-x}(TlInSe₂)_x от состава.

[3].

[1]. С.Н. Мустафаева, В.А. Алиев, М.М. Асадов. ФТТ 40, 4, 612 (1998). [2].

С.Н. Мустафаева. ФТТ 46, 6, 979 (2004).

Н.Мотт, Э.Дэвис. Электронные процессы в некристаллических веществах. Мир, М.1974,472с.