ИНДИКАТОР - РЕФЛЕКСЫ

М.Г. КЯЗУМОВ

Институт Физики им. академика Г.М.Абдуллаева НАН Азербайджана AZ-1143, Баку, пр. Г. Джавида 33

Difraksiya mənzərələrində, çoxlu sayda laylı yarımkeçiricilərin kristallik quruluşlarını formalaşdıran paketlərin tiplərini müəyyən edən, indikator-reflekslər (IR) aşkar olunmuşdur. Müəyyən edilmişdir ki, uyğun olaraq heksaqonal və monoklin quruluşlar üçün, **000** ℓ və **00** ℓ

seriyalarının ən güclü refleksinin, və həmçinin hh2hl (h=const.) və 0k ℓ (k=const.) seriyalarının ikinci güclü refleksinin ℓ - nin qiyməti elementar qəfəsdəki kationlarla dolmuş poliedr (T və O) laylarının sayını təyin edir və nəticədə *TOTB*, *TOTTB*, *TOOTB*, *TTOTTB*, *TOTBOOB*, *TOTBOOBTOTB* tip paketləri müəyyən edir. Harada, T- tetraedr, O – oktaedr, Π - boş lay.

На дифракционных картинах выявлены индикатор - рефлексы (ИР), указывающие на типы пакетов, составляющие (формирующие) кристаллические структуры многих слоистых полупроводников. Установлено, что значение ℓ самого сильного

рефлекса в серии **000** и **00** и **00** и **00** и **00** и а также второго сильного рефлекса в сериях hh2hl (h=const.) и 0kl (k=const.), соответственно, для гексагональных и моноклинных структур определяет количество заполненных катионами полиэдрических (T и O) слоев в ячейке и указывает на *ТОТП, ТОТП, ТОТП, ТОТПО, ТОТПООП, ТОТПООПТОТП* типы пакетов. Где, T- тетраэдр, O -октаэдры, II – пустой слой.

On diffraction patterns the indicator-reflexes (IR) pointing to the types of packages which form crystal structures of many layered semiconductors have been revealed. It has been established that the magnitude ℓ of the strongest reflex in the series **000** ℓ for hexagonal and

00 ℓ for monoclinic structures and also of the second strong reflex in the series hh2hl (h=const.) for hexagonal and 0k ℓ (k=const.) for monoclinic structures defines quantities of filled by cations the polyhedral (T and O) layers in the cell and points to the *TOTE*, *TOTTE*, *TOTTE*, *TOTTE*, *TOTTE*, *TOTTEOOE*, *TOTEOOETOTE* types of packages. Where *T* is the tetrahedron, *O* is the octahedron, *E* is the empty layer.

введение

Известно, что существование в одном кристалле даже незначительное количество второй фазы может сильно повлиять на некоторые физические свойства этих кристаллов. Синтезированные слоистые кристаллы часто состоят из смесей различных политипов (1-3), а иногда даже из смесей различных полиморфных фаз(4,5). Без помощи индикатор- рефлексов(ИР) фазовый анализе этих кристаллов отнимает у исследователя очень много времени. Поэтому структурная диагностика с помощью выделенных рефлексов имеет важное значение для слоистых полупроводниковых кристаллов.

Как известно, особую роль в диагностике играют те отдельные рефлексы, которые очень заметно выделяются и хорошо реагируют на структурные изменения. В дифрактограммах некоторых кристаллов существуют такие выделенные рефлексы, которые выступают, как индикатор некоторой черты структуры. Например, значение d_{060} указывает на полную или на 2/3 заполненность октаэдрических (О) позиций в слоистых силикатах (6).

Известно, что расположение рефлексов в сериях *0001*, $hh\overline{2}h\overline{l}$ (*h*=const.) и *hkil*(*h*,*k*=const., *h*-*k* = 3*n*) для гексагональных структур, а также рефлексов *001* и *0kl* (*k*=const.) для моноклинных структур указывают на толщину структурной единицы (пакета, слоя и др.). Где, *n*- целое число, *h*,*k*,*i* и *l* – индексы Мюллера, *d* межплоскостное расстояние.

По погасаниям рефлексов на дифракционной картине устанавливается пространственная группа, а по законам плотнейшей упаковки (7) устанавливаются теоретически возможные типы плотнейшей упаковки анионных слоев, т.е. х и у координаты халькогенов, и в результате также координаты металлов в этой структурной единице. Возникают вопросы - как расположены металлы по оси z в этой структурной единице? Имеются ли выделенные ИР, характеризующие расположение металлов по оси z в структурной единице?

Известно, что структура кристаллов ZnIn₂S₄ (8), MnIn₂Se₄ CdInAlS₄ (9), (10), $CoInGaS_4$ (11,1), MnInGaS₄(12), FeCr_{0.8}Ga_{1.2}S₄ (13), MgAl₂Se₄, MgIn₂Se₄ (14), $MgAl_2S_4$ (15), $MnGa_{1,6}Te_{0,4}S_4$ (16), $MnGa_{1,6}Sc_{0,4}S_4$ (17), $NiGa_2S_4$ (18), $Ga_{1.78}Cr_{0.89}S_4$ (19), α - $FeGa_2S_4$ (20,21), CdInGaS₄ (22, 2), (FeGaIn)₂S₃ (23), $Fe_{0.5}Ga_{0.5}InS_{3}$, Fe0,5Ga0,25In1,25S3 (24) и др. формируются из ТОТП типа Структура кристаллов пакетов. $Zn_2In_2S_5$ (25), $Zn_{1,25}In_{2,5}S_3Se_2$, $Cd_{0,5}Ga_2InS_5$, $Hg_{0,8}Ga_{1,6}In_{1,2}S_5$ (26), CuIn₅S₄Se₄, CuIn₅S₂Se₆ (27), AgGa₃In₂S₈ (28), CuGa_xIn_{1,67}. $_{x}S_{3}$ (0,5 < x < 0,85) (3), $Cu_{0.5}Ga_{x}In_{1.67-x}S_{3}$ (0,5 < x < 0,85) (29,30), Ga_{0,5} Fe_{1,5}S_{2,8} (31), GaInS₃(b,III) (32) и др. формируются из ТОТТП типа пакетов. Структура кристаллов $Fe_2Ga_2S_5$ (33,34), $Mn_2In_2S_{2,5}Se_{2,5}$ (35) *Mn*₂*In*₂*Se*₅ (36), *Mg*₂*Al*₂*Se*₅ (37) и др. формируются из ТООТП типа пакетов. Структура кристаллов Zn₃In₂S₆ (38), $ZnIn_2Se_4$ (39), $GaInS_3$ (40), $Cu_{0.5}Ga_{0.33}In_{1.5}S_{2.5}Se_{0.5}$ (41) и др. формируются из ТТОТТП типа пакетов.

Структура кристаллов Ga_{1,3}In_{3,4}S₇ (42) и GaInS₃(c.I) (43) формируются из *ТОТПООП* типа пакетов и структура кристалла Ga_{0,5}In_{1,5}S₃ (44) формируются из *ТОТПООПТОТП* типа пакетов. Где, T - тетраэдр, *О*октаэдр, Π -пустой межпакетный слой.

Как видно, многие многокомпонентные слоистые полупроводники имеют следующие типы структурных единиц (пакеты, слои): *ТОТП, ТОТТП, ТООТП, ТТОТТП, ТОТПООП* и *ТОТПООП* то *ТОТПООП*.

Целью данной работы является выявление индикатор - рефлексов (ИР), указывающих на вышеприведенные типы пакетов, и изучение влияния различных факторов на интенсивность ИР.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Кристаллы были синтезированы различными методами и изучены рентген -дифракционными исследованиями в виде порошка и монокристалла. Исследования велись также электрон - дифракционными методами- косых текстур (МКТ) (45-47), электронограмм вращения монокристалла (МЭВМ) (48-51). В случае МЭВМ регистрируются электроны, дифрагированные от тонкой (нано размерной) монокристаллической пленки, которая вращается вокруг одной из выбранной оси обратной решетки. В зависимости от того, какая ось обратной решетки выбрана для вращение монокристаллической пленки и в зависимости от направления падающего электронного пучка к оси вращении, сами МЭВМ представляют собой совокупность нескольких методов.

Ранее было установлено, что при исследовании фаз, у которых структура неизвестна, а также при диагностике известных фаз, особое значение может иметь самый сильный рефлекс в серии **0001** и вторые сильные рефлексы в сериях $hh\overline{2}hl$ (*h*=const.) и **hkil** (*h*,*k*=const., *h*-*k*=3*n*), относящиеся к гексагональным, тригональным и ромбоэдрическим структурам, а также самый сильный рефлекс в серии **001** и вторые сильные рефлексы в сериях *0kl* (*k*=const.) относящиеся к моноклинным структурам (52,30). Учитывая важные структурнодиагностические качества этих рефлексов мы их будем называть индикатор- рефлексами(ИР).

Как известно, ось с перпендикулярна (в случае гексагонального кристалла) или составляет более 80° (в случае моноклинного кристалла) с плоскостью пленки слоистого монокристалла. Пленку можно наклонять максимум на 70°-75° от перпендикулярного положения к падающему электронному пучку. По этой причине получение 0001 (001) серии на электронограммах очень трудно. Поэтому при диагностике по электронограммам в основном можно использовать вторые сильные рефлексы в сериях $hh\overline{2}hl$ (*h*=const.) и **0kl** (*k*=const.) соответственно, для гексагональных и моноклинных структур. Часто базисная плоскость основной решетки гексагональных кристаллов состоят из элементарного ромба плотной упаковки анионов халькогенов. Поэтому при диагностике в основном можно использовать второй сильный рефлекс в сериях *II21*.

При увеличение параметра а основной решетки в 3^{1/2} и 2 раза, которые наблюдаются в гексагональных структурах в виде сверхрешетки, для диагностики нужно использовать вторые сильные рефлексы, соответственно в сериях 3031 и 2241. В случае моноклинного кристалла, если параметр b равен длине элементарного ромба (диаметр аниона) плотной диагностике лучше упаковки, при было бы использование второго сильного рефлекса в серии 021, а | при увеличение параметра b в n раз, соответственно- в серии **02nl**.

Известно, что на рентгенограммах от поверхностей слоистых монокристаллов основном выходят сильные *001* (в 0001 (в гексагональных структурах) и моноклинных структурах) рефлексы. Нами установлено, что если структуры этих монокристаллов состоят из вышеуказанных пакетов, тогда на дифракционных картинках выделяется одна самая сильная линия (рефлекс). На рис.1. показан один ИЗ таких рентгенограмм. Как видно, выходят 0001 линии и среди них самым сильным (не учитывая начальный пучок 0000) являются рефлекс 000, m3. Где, m = const. - количество пакетов в ячейке.

Рис.1. Рентгенограмма от порошка CdInGaS₄, где слоистые кристаллики расположены параллельно к подложке.

В таблице 1. приведены экспериментальные значение интенсивностей рефлексов, установленные на рентгенограммах от вращающая монокристаллов. Как видно, для кристалла GaInS₃(b,III) самым сильным рефлексом в серии 0001 является рефлекс 00012 (l =12 = 3х4), а вторым сильным рефлексом в серии $II\overline{2}l$ является рефлекс $II\overline{2}$ 12(l =12). Для кристалла GaInS₃ самым сильным рефлексом в серии 0001 является $(\mathbf{l}=5)$, а вторым сильным рефлексом в рефлекс 0005 серии $H\overline{2}l$ является рефлекс $H\overline{2}5$ (l=5). Для кристалла GaInS₃(c,I) самым сильным рефлексом в серии 0001 является рефлекс 0005 (l = 5), а вторым сильным рефлексом в серии $H\overline{2}l$ является рефлекс $H\overline{2}5$ (l=5).

При прессировании порошков слоистые кристаллики в основном лежат параллельно к подложке. Значит, они по базису имеют разные ориентации, а перпендикулярно к ним одинаковые ориентации, т.е. образуют текстуры. В зависимости от позиции вращающего текстурированного образца к падающему рентген лучу одни дифракционные картины значительно, а другие незначительно отличаются от истинных значений интенсивностей рефлексов.

Таблица 1.

GaInS ₃ (b,III) $a = 3,808$ Å,				GaInS ₃ $a = 3,81$ Å,				GaInS ₃ (c, I) $a = 3,819$ Å,			
<i>c</i> = 45,894Å			<i>c</i> =18,19Å				<i>c</i> =21,12Å				
hkl	\mathbf{F}^2	hkl	\mathbf{F}^2	hkl	F	hkl	F	hkl	F^2	hkl	F^2
003	194,66	011	331,25	002	10,27	010	38,35	001	37,1	100	451,1
006	259,58	012	555,75	003	31,85	100	3784	002	254,7	101	437.0
009	459,75	014	163,99	004	28,48	011	37,72	003	0,0	101	368,5
0012	916,16	015	568,90	005	113,32	101	53,51	004	13,6	102	1123,9
0015	281,53	017	529,91	006	36,56	012	4,76	005	1020,6	102	185,2
0018	326,76	018	585,36	007	28,83	102	90,22	006	197,2	103	142,0
0021	444,42	0110	397,86	008	35,83	013	29,13	007	32,2	103	585,8
0024	438,11	0111	119,51	009	29,75	103	43,86	008	418,6	104	1062,1
0027	421,12	0113	226,02	0010	48,00	014	57,30	009	120,1	104	236,1
0030	149,35	0114	854,31	0011	29,75	104	20,60	0010	538,7	105	693,0
110	995,44	0116	132,75	110	132,55	015	22,89	110	1197,6	105	280,6
113	128,60	0117	463,54	111	14,38	105	24,95	111	35,6	106	733,5
116	154,03	0119	761,94	112	9,65	016	47,81	112	339,3	106	297,5
119	277,77	0120	454,86	113	23,36	106	63,71	113	69,2	107	752,6
1112	593,79	0122	918,20	114	18,24	017	28,63	114	56,3	107	240,0
1115	150,60	0123	493,07	115	72,43	107	78,98	115	906,9	108	526,7
1118	208,52	0125	208,10	116	16,38	018	40,40	116	129,0	108	873,1
1121	310,84	0126	368,28	117	19,95	108	10,58	117	139,1	109	551,9
1124	308,87	0128	222,50	118	19,13	019	90,35	118	291,2	109	82,9

Таблица 2.

Ga_{0,5}Fe_{1,5}S₂ , <i>a</i> =3,650 Å, <i>c</i> =29,682 Å	8	$Ga_{0,5}Fe_{0,25}In_{1,25}S_3$ $a=(3,786 \times 2) \text{ Å},$ c=36,606 Å.		$Ga_{0,75}Fe_{0,25}InS_3$ $a=(3,786 \times 2) \text{ Å},$ c=12,186 Å		$Ga_{0,25}Fe_{0,25}In_{1,5} S_3$ $a=(3,782 \times 2)$ Å, c=12,234Å	
I/I_0	hkil	I/I_0	hkil	I/I_0	hkil	I/I_0	hkil
70	0002	60	0003	70	0001	80	0001
20	0004	25	0006	5	0002	25	0002
80	0006	100	0009	10	1012	100	0003
100	0008	20	1121	100	0003	10	1120
7	00010	22	2022	50	1120	50	2021
20	00012	20	2024	4	2021	16	0004
3	1018	5	0012	5	0004	20	2023
3	1019	12	2028	20	0005	6	0005
2	10110	12	00015	7	2024	5	2024
6	00014	10	20213	40	0006	20	2025
4	10111	15	11215	4	2025	15	0006
4	10112	40	00018	3	2240	16	2240
3	00016	20	2240	25	0007	6	0007
5	1120	15	20217	5	0008	7	2027
5	1126	22	00021			5	0008
5	10115	5	30315			10	4046
10	00018	8	00024				

В нашем случае текстурированный образец наклоняется вдоль оси перпендикулярной к оси текстуры, а луч, оставаясь перпендикулярным к оси наклона, падает на поверхность образца и регистрируются лучи, отраженные от этой поверхности. В этом случае по сравнению с другими сериями рефлексов на рентгенограммах выходят гораздо сильнее

образец | 0001 серии рефлексов, в том числе и самый сильный рефлекс этой серии- ИР. В таблице 2. приведены экспериментальные значение интенсивностей рефлексов, соответственно для образцов $Ga_{0,5}Fe_{1,5}S_{2,8}$ (a=3,650 Å, рхности. c=29,682 Å), $Ga_{0,5}Fe_{0,25}In_{1,25}S_3$ (a=7,572 Å, c=36,606Å сериями), $Ga_{0,75}Fe_{0,25}In_{3}$ (a=7,572 Å, c=12,186Å) и сильнее $Ga_{0,25}Fe_{0,25}In_{1,5}$ S₃ (a=7,572 Å, c=12,186Å). В этом

случае относительные интенсивности рефлексов разной серии значительно отличаются от их истинных значений, но такие рентгенограммы имеют пенные диагностические качества, так как ИР на этих снимках явно выделяется. Как видно в серии 0001 самым сильным рефлексом для образца Ga_{0,5}Fe_{1,5}S_{2,8} являются рефлекс 0008 ($l = 8 = 4 \ge 2$), для образцов $Ga_{0,75}Fe_{0,25}InS_3$ и Ga_{0.25}Fe_{0.25}In_{1.5} S₃ являются рефлекс 0003 (l = 3), а для образца $Ga_{0,5}Fe_{0,25}In_{1,25}S_3$ - рефлекс 0009(l = 9 = 3x3). Значения а параметра этих кристаллов в два раза больше параметра элементарного ромба плотной упаковки. Поэтому к серии $H\overline{2}l$ в данном случае соответствует серия 2241.

На рентгенограммах от неориентированных порошков относительные интенсивности рефлексов разной серии довольно хорошо совпадают с их истинными значениями. В этом случае дифракционные картины богаты с рефлексами *hkil*, но очень слабо видны *0001* серии, в том числе и самый сильный рефлекс ИР этой серии. Поэтому для диагностики такие дифракционные картины менее ценны (литература).

При исследовании слоистых кристаллов более эффективными методами являются МКТ и особенно метод МЭВМ. Электронограммы МЭВМ отличаются от электронограммы МКТ большей информативностью, отличным разрешением слабых сверхрешеток и других тонких структурных эффектов. Кроме этого, в отличие от МКТ можно избегать наложения рефлексов.

На рис. 2,3,4,5,6,7. показаны электронограммы от текстур и монокристаллов для образцов CdInGaS₄, GaInS₃, GaInS₃(b,III), Fe_{0,5}Ga_{0,5}InS₃. По распределению рефлексов на малой оси эллипсов определяется параметр a, а по распределению рефлексов на первом эллипсе (*1011* и *0111* серии) параметр c гексагональной решетки. По распределению рефлексов на втором эллипсе ($II\overline{2}l$ серии) определяется высота пакета, так как в этой серии погашены рефлексы, определяющие высоту элементарной ячейки.

модификациях 1Т(однопакетный политипных B тригональный), 2Н (двухпакетный гексагональный) и CdInGaS₄ 3R(трехпакетный ромбоэдрический) соответственно, (16,17)имеется, 4. 8 12 плотноупакованных слоев серы, из них соответственно, только 3, 6, 9 межслоев серы заняты катионами, а каждый четвертый межслой серы, т.е. каждый межпакетный слой пустует (2). Для политипных модификации 1Т, 2Н и 3R CdInGaS₄ значение *l*, соответствующее самому сильному рефлексу в серии рефлексов (рис.1), а также значение *l*, 0001 соответствующее второму сильному рефлексу в серии H2lрефлексов (рис.2-4), соответственно, равны значениям 3, 6 и 9 и, соответственно, столько же межслоев серы занято катионами.

Значение **I**, соответствующее самому сильному рефлексу в серии *0001* рефлексов и также второму сильному рефлексу в серии $II\overline{2}l$ рефлексов, соответственно, равно: *I*=5 для 1Т политипа GaInS₃ с параметром с=18,19Å (рис.5), *I*=12=(3х4) для 3R политипа GaInS₃(b,III) с параметром с=45,894Å (рис.6),

I=3 для 1Т политипа Fe_{0.5}Ga_{0.5}InS₃ с параметром с=12,210Å (рис.7.), I=5 для 1Т политипа GaInS₃(с,I) с параметром с=21,12Å (таблица.1), I=15=(3x5) для 3R политипа Ga_{1.3}In_{3.4}S₃ с параметром с=63,41Å (42), а также I=24=(3x8) для 3R политипа Ga_{0.5}In_{1.5}S₃ с параметром с=100,04Å (44).

Puc.2. Электронограмма от текстур 1Т политипа CdInGaS₄.

Рис.3. Электронограмма (ЭВМ) от монокристалла 2Н политипа CdInGaS₄.

Рис.4. Электронограмма от текстур 3R политипа CdInGaS₄.

Рис. 5. Электронограмма от текстур 1Т политипа GaInS₃.

Рис. 6. Электронограмма от текстур 3R политипа GaInS₃(b.III).

Puc. 7. Электронограмма от текстур 1Т политипа $Fe_{0,5}Ga_{0,5}In_2S_3$.

Рис.8. II 2 0 сечения структуры кристаллов CdInGaS₄, CdInGaS₄, (GaIn)₂S₃ и ZnIn₂Se₄.

Таким образом в структуре пакетов $Fe_{0,5}Ga_{0,5}InS_3$ из четырех межслоев серы только три занято катионами, в структуре пакетов GaInS_3 из шести межслоев серы только пять занято катионами, в структурах пакетов GaInS_3 (b,.III) и Ga_{0,5}Fe_{1,5}S_{2,8} из пяти межслоев серы только четыре занято катионами, в структурах пакетов Ga_{1,3}In_{3.4}S_7 и GaInS_3(c.I) из семи межслоев серы только пять заняты катионами, а в структуре пакетов Ga_{0,5}In_{1,5}S_3 из десяти межслоев серы только восемь заняты катионами.

Следовательно, структуры пакетов в полиэдрах, соответственно, должны иметь следующую типы: для $Fe_{0.5}Ga_{0.5}InS_3 - TOT\Pi$ тип, для $GaInS_3 - TTOT\Pi$ тип, для $GaInS_3(b,III)$ и $Ga_{0.5}Fe_{1.5}S_{2.8} - TOTT\Pi$ тип, для $Ga_{1.3}In_{3.4}S_7$ и $GaInS_3(c.I) - TOT\PiOO\Pi$ тип и для $Ga_{0.5}In_{1.5}S_3 - TOT\PiOO\PiTOT\Pi$ тип. Эти результаты нашли свое подтверждения при сравнении экспериментальных значении интенсивностей рефлексов **0001** и $II\overline{2}I$, с их вычисленными для этих моделей значениями.

В таблице3. приводятся значения l для ИР в сериях рефлексов типа **0001** и $II\overline{2}l$, и также число заполненных катионами, перпендикулярно к оси с, тетраэдрических (Т) и октаэдрических (О) слоев для различных фаз этих кристаллов. На рис.8.показаны $II\overline{2}0$ сечения структуры этих кристаллов, характеризующиеся расположением атомов серы и селена по законам плотнейшей упаковки. Катионы при этом занимают, образованные атомами серы или селена, (Т) и (О) пустоты.

Таким образом. электронографическое И рентгенографическое исследование текстур, монокристаллов порошков и различных фаз кристаллов вышеуказанных показывает, что дифракционная картина имеет одну общую, характерную для всех этих кристаллов, особенность. Значение *l* самого сильного рефлекса в сериях рефлексов типа 0001 и второго сильного рефлекса в сериях рефлексов типа hh2hl (*h*=const., самый сильный рефлекс в этих сериях -hh2h 0определяет количество заполненных катионами межслоев анионов и следовательно, это значение определяет типы пакетов.

Таблица 3.

	Фазы и	Число	Значение І	Число	Литера
Формулы	соответствуюшие	слоев анионов	для	заполненных	тура.
	с параметры	соответственно, в	индикатор	Т и О слоев	
	решетки	ячейке (*) и в	рефлексов.	в ячейке и в	
		пакете (+).		пакете.	
	1T	4 (*)	3	3(2 T, 1 O)	(2)
	<i>c</i> =12,34Å	4 (+)		3(2 T, 1 O)	
	2H, 2T	8	6	6(4 T, 2 O)	(2)
CdInGaS ₄	<i>c</i> =24,68Å	4		3(2 T, 1 O)	(22)
	3R	12	9	9(6 T, 3 O)	(2)
	<i>c</i> =37,2Å	4		3(2 T, 1 O)	
CdInAlS ₄	3R	12	9	9(6 T, 3 O)	(9)
	<i>c</i> =36,978Å	4		3(2 T, 1 O)	
$Fe_{0.5}Ga_{0.5}In_2S_{3-x}$	1T	4	3	3(2 T, 1 O)	(23)
	<i>c</i> =12,210Å	4		3(2 T, 1 O)	(24)
C I C	1T	6	5	5(4 T, 1 O)	(40)
GainS ₃	<i>c</i> =18,19Å	6		5(4 T, 1 O)	
	3R	15	12	12(9 T, 3 O)	рис.6
GaInS ₃ (b,III)	<i>c</i> =45,894Å	5		4(3 T, 1 O)	(32)
	1T	7	5	5(2 T 3 O)	(43)
GaInS ₃ (c,I)	c = 21.12 Å	7	5	5(2 T, 3 O)	(45)
	21,12 11	,	1.5	5(21,50)	(12)
$Ga_{13}In_{34}S_{3}$	3R	21	15	15(61,90)	(42)
1,5 5,1 5	<i>c</i> =63,41A	10		5(21,30)	(2.0)
$ZnIn_2Se_4$	3R	18	15	15(12 T, 3 O)	(39)
	<i>c</i> =59,29A	6		5(4 T, 1 O)	
$Ga_0 \leq In_1 \leq S_2$	3R	33	24	24(12 T 120)	(44)
000,5111,505	c = 100.04 Å	11		8(4 T. 4 O)	()
		10		o((T, 0 c)	(21)
$Ga_{0,5}Fe_{1,5}S_{2,8}$	2H	10	8	8(6 T, 2 O)	(31)
	<i>c</i> =29,682 A	5		4(3 T, 1 O)	
CuGa _{0,67} In ₃ S ₅ Se	1T	6	5	5(4 T, 1 O)	(41)
	<i>c</i> =18,695 Å	6		5(4 T, 1 O)	

Сведения о численности заполненных катионами межслоев халькогенов гораздо облегчают выбор моделей структур. Например, для ромбоэдрической фазы $Ga_{1,3}In_{3,4}S_7$ с параметром решетки с=63,41Å мог бы существовать другой вариант структуры, в котором к центральному октаэдрическому слою примыкают с стороны два, с другой стороны одной три тетраэдрические слоя, а последний слой, являющийся межпакетным, пустует. В этом случае пакет имеет ТТОТТТП тип. Поэтому первым и вторым сильным рефлексом, соответственно, в сериях 000l и $hh\overline{2}hl$ должен быть, соответственно, рефлексы 00018 и *hh2h 18*, а не *00015* и *hh2h 15*.

Структура однопакетной тригональной фазы кристалла GaInS₃ (c=18,4Å) могла бы формироваться и в ТОТПОП типе, характерной для структуры хлоритов.В отличие от хлорита, в этом случае для того, чтобы приблизительно сохранить баланс валентности серы, октаэдры(O) должны заполняться полностью, а типичные тетраэдры (T) и нетипичные тетраэдры $\Pi(T)$, примыкающие одним из своих граней к гране типичных тетраэдров (T), должны заполняться частично, т.е.

 $hh\overline{2h}l$ должен быть, соответственно, рефлексы 0004 и $hh\overline{2h}$ 4, а не 0005 и $hh\overline{2h}$ 5. По дифракционным картинам легко различаются эти типы пакетов даже в смеси. На рис.9. показана

приблизительно на 2/3 и 1/3, соответственно. Очевидно,

что первым и вторым сильным рефлексом в сериях 0001 и

типы пакетов даже в смеси. На рис.9. показана рентгенограмма от порошка GaFeS_{2,7}, где слоистые кристаллики расположены параллельно к подложке. Пик 0003[1] указывает на первую фазу имеющую ТОТП типа пакета, а пик 0004[2] на вторую, имеющую ТОТП типа пакета. Идентичность интенсивностей этих двух пиков указывает и на приблизительное весовое равенство этих двух фаз. Эти фазы сменяют друг друга послойно, перпендикулярно к оси *с*. По электронограммам косых текстур установлены соответствующие параметры элементарной ячейки этих фаз: a=3,653 Å, c=36,100 Å, пр.гр. R3m и a=3,653 Å, c=29,736 Å, пр.гр. $P6_3$ mc (4).

Часто дифрактограммы от смесей политипных фаз, а иногда даже дифрактограммы от смесей полиморфных фаз ошибочно расшифровываются на основе параметра, кратного параметрам фаз, составляющие смесь. В данном (вышеприведенном) случае ошибочным параметром может быть c = 180 Å, из-за того, что все рефлексы этих двух фаз вместе хорошо расшифруются на основе этого параметра.

Рис.9. Рентгенограмма от порошка *FeGaS*_{2,7}, где слоисты кристаллики расположены параллельно к подложке.

О ценности ИР можно судить еще и по одному примеру. В кристаллах CdInGaS₄ и Cd₃InGaS₆ при 77К обнаружена интенсивная зеленая люминесценция (5, 53-56). Нужно было представить схему, объясняющую механизм этого явления. Предложены и проверены различные структурные модели (53, 5) на основе структуры политипов ZnIn₂S₄ и Zn₃In₂S₆. Предположено, что эти кристаллы состоят из смесей двух фаз (55). Предложена и проверена также модель основной фазы смеси, где элементарная ячейка CdInGaS₄, с параметрами a=3,88 Å, c=37,40 Å, состоит из трех разных пакетов, т.е. ТОТПОТТПІТТОП типа пакетов вдоль оси c (55). Авторы работ (5, 55-56) остановились на этой модели структуры CdInGaS₄.

Это была ошибка. Конечно, может быть трудно было обнаружить ромбоэдрическое погасание рефлексов общего типа, для кристаллов CdInGaS₄ в смеси двух фаз. Но во всех рентгенограммах (особенно, в рентгенограммах от поверхности роста кристалла), приведенных в работах (53, 55, 56, 5), явно выделяется 0001 серия и в этой серии присутствуют только рефлексы со значением l=3n. Где, n – целое число и 3- указывает на то, что элементарная ячейка состоит из трех идентичных структурных единиц(m=3).

Также нарушаются законы кристаллохимии. По модели структуры CdInGaS₄ (55) металлы между слоями атомов серы расположены таким образом:

 $\dots S \ Ga_{_T} \ S \ In_o \ S \ Cd_{_T} \ S \ In_o \ S \ Cd_{_T} \ S \ In_o \ S \ Cd_{_T} \ S \ Ga_{_T} \ S \ \Pi \ S_1 \\ Cd_{_T} \ S_2 \ Ga_{_T} \ S \ In_o \ S \ \Pi \ \dots$

Как видно, каждому атому серы в слое S₁ приходится 1.5 положительных валента, а в слое S₂ - 2,75 положительных валента. В результате электронейтральность слоев серы сильно нарушается (элементарная ячейка остается электронейтральной). Конечно, значительное нарушение электронейтральности слоев халькогенов встречается и в других кристаллах.

Дальнейшее исследования показало, что синтезированные все кристаллы Cd_3InGaS_6 и кристаллы Cd_1nGaS_4 , в котором Cd больше, чем в химической формуле, состоят из смесей CdS и CdInGaS₄ (5, 56). Эти смеси расположены послойно, перпендикулярно к оси *с*. В работе (56) на основе зонной структуры этих кристаллов построена диаграмма, которая легко объясняет происхождение зеленой люминесценции.

Если была бы известна диагностическая роль вышеуказанных рефлексов (ИР), в этих работах не нужна было тратить так много времени на фазовый анализ этих кристаллов. Вед на всех рентгенограммах, особенно, в рентгенограммах от поверхности роста кристалла (5, 53, 55, 56) рефлексы **000,m3** (ИР) ярко выделяются. Где, m=const.- количество структурных единиц (пакет) в ячейке Даже в начале исследования (53) по ИР можно было бы сразу установить структуру основной фазы (CdInGaS₄) в смеси, а затем легко можно было бы установить и вторую фазу.

- [1]. *М. Г.Кязумов.* Кристаллография. 2000. т.45, №4, с.617-619.
- [2]. М.Г. Кязумов. Физика, 1996, т.2, № 4, с. 28-31.
- [3]. М.Г.Кязумов, Г.Г.Гусейнов, Г.С.Мехтиев, Э.А. Исаева. Изв. НАН Азербайджана. 2002, т.ХХІІ, №2, с.78-83.
- [4]. М.Г.Кязумов, М.Г.Казымов, Л.В.Рустамова. Изв. НАН Азербайджана. 2007, т.ХХVII, №2, с.108-111.
- [5]. Taizo Irie, Shizutoshi Ando, Yasutoshi Noda and Saburo Endo. Jpn. J. Appl. Phys. Vol.31 (1992) Pt.1, № 8, pp.2508-2513.
- [6]. В.И.Михеев. Рентгенометрический определитель минералов. М.Изд-во Н.Т., 1957, 867с.
- [7]. Н.В.Белов. Структура ионных кристаллов и металлических фаз.- М., 1947. 237 с.
- [8]. F. Lappe, A. Niggli, R. Nitsche, J.G.White. Z. Kristallogr. 117 (1962) 146.
- [9]. A.G. Abdullayev and M.G. Kyazumov. Thin Solid Films, v.190, 1990, pp. 303-307.

- [10]. G. Doll, M. C. Lux-Steiner, Ch. Kloc, J. R. Baumann, E. Bucher. J. Crystal Growth 104 (1990) 593- 600.
- [11]. H.Haeuseler, H. J. Stork, W. Cordes. J. Solid State Chem. 87 (1990) 15-19.
- [12]. *H Haeuseler, H. J. Stork.* J. Mater. Chem.2 (1992) 145-147.
- [13]. H. D. Lutz, Th. Stingl. Acta Crystallogr. C49 (1993) 207-209.
- [14]. K. J. Range. Z. Naturforsch. 51b (1996) 1363-1364.
- [15]. F. Hulliger. in "Structural Chemistry of layer-Type Phases" (F. Levy. ed.), D. Reidel Publishing Co., Dordrecht (1976).
- [16]. H. Haeuseler. Z. Kristallogr. 208 (1993) 195-198.
- [17]. H.Haeuseler, H. J. Stork. Z. Kristallogr. 203 (1993) 243
- [18]. H.D.Lutz, W. Buchmeier, H. Siwert. Z. Anorg. Allg. Chem. 533 (1996) 118-124.
- [19]. H. Haeuseler, W. Kwarteng Acheampong, M.Jung. J. Phys. Chem. Solids 49 (1988) 767.

- [20]. L. Dogguy-Smiri, M.P.Pardo, Nguyen Huy Dung. C.R. Hebd. Seances Acad. Sci. Ser. C287 (1978) 415-418.
- [21]. L. Dogguy-Smiri, Nguyen Huy Dung, M.P.Pardo. Mater. Res. Bull. 15 (1980) 861.
- [22]. *М.Г. Кязумов, И.Р. Амирасланов*. ДАН Аз.ССР, 1983, т. 39, № 2, с. 19-21.
- [23]. М.Г. Кязумов, Г.Г.Гусейнов, М.Г. Казымов, Л.В.Рустамова. Изв. НАН Азербайджана. 2005, т.XXV, №5.
- [24]. Г.Г.Гусейнов, Н.Н.Мусаева, М.Г.Кязумов, И.Б.Асадова, О.М.Алиев. Неорганические материалы, 2003, т.39, №9, с.1-3.
- [25]. Ф.Г. Доника, С.И. Радауцан, С.А.Семилетов, *Т.В.Доника, И.Г. Мустя.* Кристаллография, 1972, т. 17, вып. 3, с. 666-667.
- [26]. H. Haeuseler, A. Cansiz, M Himmrich, M. Jung. J. Solid State Chem. 74 (1988) 171-175.
- [27]. H. Haeuseler, E.Elitok, A.Memo, A. Osnovsky. Materials Research Bulletin 36(2001) 737-745.
- [28]. H. Haeuseler, E.Elitok, A.Memo, R.Arzani. Z.Anorg.Chem. 2001. 627. 1204-1208.
- [29]. *М.Г. Кязумов.* Доклады НАН Азербайджана. 2002, т.LVIII, № 1-2, с. 80 84.
- [30]. *М.Г. Кязумов.* Кристаллография. 1998. т.43, №4, с.661-663.
- [31]. *М.Г. Кязумов, И.Б. Асадова, Г.Г. Гусейнов, Е.А.Исаева.* Доклады НАН Азербайджана. 2002, т.LVIII, №3-4, с.113-117.
- [32]. И.Р.Амирасланов, Г.Г. Гусейнов, Х.С.Мамедов, А.С.Кулиев. Кристаллография, 1988, т. 33, вып. 3, с. 767-768.
- [33]. L. Dogguy-Smiri, Nguyen Huy-Dung. Acta Crystallogr. 38 (1982) 372-375.
- [34]. *G. Cascarano, L. Dogguy-Smiri*, Nguyen Huy-Dung. Acta Crystallogr. C43 (1987) 2050-2053.
- [35]. S. Reil. Phasenanalytische und structurelle Untersuchungen an Chalkogenidsystemen. Ph.D Dissertation, University of Siegen (1997).
- [36]. K. J.Range, U.Klement, G. Doll, E. Bucher, J. R. Baumann. Acta. Crystallogr. C48 (1992) 355-356.
- [37]. P. Dotzel, H. Schafer, G.Schon. Z. Anorg. Allg. Chem. 426 (1976) 260-268
- [38]. F.G.Donika, V.F. Zhitar, S. I. Radaytsan. Acta crystallographica, 1966, Vol.21, pt. 7, p.A49.
- [39]. A.G. Abdullayev and M.G. Kyazumov. Thin Solid Films, v.190, 1990, pp. 309-315.

- [40]. Г.Г.Гусейнов, М.Г.Кязумов, А.С.Кулиев, И.Р. Амирасланов, Г.С.Мехтиев. Доклады АН Азерб.ССР, 1988, т. XLIV, № 7, с 26-29.
- [41]. М.Г.Кязумов, Г.Г.Гусейнов, Е.А.Исаева, Ф. Г. Магеррамова, Г.С. Мехтиев. Изв. НАН Азербайджана. 2003, т.ХХІІІ, №2, с.139-141.
- [42]. *М.Г.Кязумов, И. Р.Амирасланов, Ю.Г.Асадов.* Изв. НАН Азербайджана. 2003,
- [43]. т.XXIII, №5, с.56-61.
- [44]. И.Р.Амирасланов, Ф. Ю.Асадов, А. А.Мусаев, Г.Г. Гусейнов. Кристаллография, 1989, т. 34, №4, с. 1012.
- [45]. И.Р. Амирасланов, Ф.Ю. Асадов, Б.А. Максимов, В.Н. Молчанов, А.А.Мусаев, Н.Г. Фурманова. Кристаллография, 1990, т.35, в.2, с.332-336.
- [46]. *З.Г. Пинскер.* Дифракция электронов. М.: Наука, 1949. 402 с.
- [47]. Б.К. Вайнштейн. Структурная электронография. М. :Наука, 1956. 314 с.
- [48]. *Б.Б. Звягин*. Электронография и структурная кристаллография глинистых минералов. –М.: Наука, 1964, 312 с.
- [49]. Б.Б. Звягин, А.П. Жухлистов, М.Г. Кязумов, А.М. Фоминенков. Кристаллография. 1990, т. 35, вып.3, с.602-609.
- [50]. *М.Г.Кязумов.* и др. Авторское свидетельство. № 169397, 1991.
- [51]. *М.Г. Кязумов.* Доклады АН Азербайджана. 1999, т.LV, №1-2, с.110-116.
- [52]. *M.G. Kyazumov.* Acta Cryst. (2000) A56(Suppl.), s.34.
- [53]. Kyazumov.M.G. 11th International conference on Ternary and Multiternary Compounds (ICTMC-11) Salford UK. 8-12 september, 1997, P1.76.
- [54]. Taizo Irie, Hisayuki Nakanishi, Saburo Endo, Hideo Kurogane and Taro Toyoda. Jpn. J. Appl. Phys. Vol.24 (1985) № 7, pp.881-882.
- [55]. Taizo Irie, Saburo Endo, Hideo Kurogane, Hisayuki Nakanishi and Taro Toyoda. Jpn. J. Appl. Phys. Vol.25 (1986) №6, pp.922-923.
- [56]. Hiroaki Matsushita, Shigetaka Nomura, Shizutoshi Ando, Saburo Endo and Taizo Irie. Jpn. J. Appl. Phys. Vol.29 (1990) №6, pp. L 872- L 874.
- [57]. Shizutoshi Ando, Saburo Endo, Hisayuki Nakanishi and Taizo Irie. Jpn. J. Appl. Phys. Vol.31 (1992) Pt.1, № 9A, pp.2803-2810.