РЕНТГЕНОГРАФИЧЕСКИЙ АНАЛИЗ, МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ И ЭЛЕКТРОПРОВОДНОСТЬ TICoS₂, TICoSe₂

Р.Г. ВЕЛИЕВ, Э.М. КЕРИМОВА, Р.З. САДЫХОВ, Ю.Г. АСАДОВ, А.И. ДЖАББАРОВ

Институт Физики им. академика Г.М.Абдуллаева НАН Азербайджана AZ-1143, Баку, пр. Г. Джавида 33

Показано, что соединение TlCoS₂, TlCoSe₂ являются ферримагнетиками и обладают полуметаллическим и металлическим характерами электропроводности, соответственно. Обнаружено влияние магнитного фазового перехода на перенос заряда в TlCoS₂.

Göstərilmişdir ki, $TlCoS_2$, $TlCoS_2$ birləşmələri ferrimaqnitiklər və uyğun olaraq elektrokeçiriliciyin metal və yarım metal xüsusiyyətlərinə malikdirlər. Maqnit faza keçidinin $TlCoS_2$ - də yükdaşıyıcılara təsiri müşahidə olunmuşdur.

It was shown that $TICoS_2$, $TICoSe_2$ compounds are ferrimagnetics and have semimetalic and metallic character of conductivity, respectileby The influence of magnetic phase transition on charge transport in $TICoS_2$ have been found.

Низкосимметричность кристаллической структуры магнетиков типа *TlMeX*₂ (где, *Me*=3d-металл; X=S, *Se*, *Te*) [1-7] предопределяет зависимость их магнитных и электрических свойств от основных кристаллографических направлений, некоторых в случаях - вплоть до возникновения низкоразмерного эффекта, когда магнитная структура магнетика в парамагнитной области, в определенном температурном интервале находится «квазидвумерном» В или «квазиодномерном» магнитном упорядочении (модель Изинга-Гейзенберга) [8-12]. Такие магнитные структуры, в частности, двумерные ферро- и ферримагнитики, обладающие полупроводниковым или полуметаллическим характером электропроводности, могут быть базовыми материалами для спин-электроники.

Учитывая вышеизложенное, сплавлением химических стехиометрическом элементов, взвешенных В соотношении, были синтезированы $TlCoS_2$, $TlCoSe_2$. Синтез проводился в электропечи, эвакуированных до остаточного давления ~10⁻³ Па кварцевых ампулах. Для предотвращения взрыва ампул температура электропечи повышалась до температуры плавления серы (391 К), селена (493 К) и поддерживалась в течение трех часов. После этого температура печи плавно повышалась до температуры ~1100K, при которой ампулы выдерживались в течение 72 часов. Затем продукт реакции измельчался и синтез повторялся. После этого образцы приводились в порошкообразное состояние, спрессовывались и в эвакуированных кварцевых ампулах подвергались гомогенизирующему отжигу при температуре ~600К в течение 480 часов.

Так как магнитная структура магнетика формируется его кристаллической структурой, то прежде должны быть проведены рентгенографические исследования: определение типа кристаллической структуры, сингонии и параметров кристаллической решетки, которые в совокупности позволили бы предположить к какой слоистой или цепочечной структуре может быть отнесен конкретный синтезированный кристалл типа $TlMeX_2$ (где, Me=3d-металл; X=S, Se, Te).

Рентгенографический анализ образцов $TlCoS_2$ и $TlCoSe_2$, специально подготовленных после отжига, проводился при комнатной температуре (~300K) на

дифрактометре ДРОН-3М (СиК_{α}-излучение, λ =1.5418 Å, Ni-фильтр, режим-35кВ,10мА). Угловое разрешение составляло~0.01°. Использовался съемки режим непрерывного сканирования. Углы дифракции определены методом измерений максимуму по интенсивности и ошибка определения углов отражений не превышала $\Delta \theta = \pm 0.02^{\circ}$.

На рис.1. представлены дифрактограммы кристаллов $TlCoS_2(a)$ и $TlCoSe_2(b)$. Кристаллы $TlCoS_2$, $TlCoSe_2$ легко расслаиваются и от естественной поверхности слоев с размерами 5x5x1 мм в интервале углов $10^{\circ} \le 2\theta \le 70^{\circ}$ были зафиксированы семь отражений от $TlCoS_2$ и четырнадцать – от $TlCoSe_2$. По этим отражениям были рассчитаны параметры кристаллической решетки $TlCoS_2$, $TlCoSe_2$. Результаты расчета приведены в таблицах 1;2.

В структуре TlCoS₂ и TlCoSe₂ существуют группы из четырех равноотстоящих друг от друга слоев из атомов Tl, Co, S(1) или Se(1) и S(2) или Se(2) в одной и той же упаковочной позиции. В тригональной ячейке содержатся три такие взаимопроникающие группы. В структуре атомы Co центрируют тригональные призмы из атомов S(Se), а атомы Tl окружены тетраэдрически атомами S(Se). Каждый атом S(1) или Se(1) окружен тетраэдрически тремя атомами Co и одним атомом Tl, а атомы S(2) или Se(2) центрируют тригональные призмы из трех атомов Co и трех атомов Tl.

Изложенное выше позволяет заключить, что соединения TlCoS₂, TlCoSe₂ имеют кристаллическую решетку тригональной сингонии, параметры которой в гексагональных осях определяются значениями: a=3.726Å, c=22.510Å, c/a~6.04, число формульных единиц в элементарной ячейке z=3, рентгеновская и a=3.746Å, c=22.770Å, плотность $\rho_x = 6.026 \Gamma/cM^3$ с/а \approx 6.08, z=3, ρ_x =7.365 г/см³ соответственно. При этом можно предположить, что кристаллы TlCoS₂, TlCoSe₂ являются слоистыми магнетиками, т.к отношение с/а для обоих кристаллов достаточно большое (~6).

Методом Фарадея на магнитоэлектрических весах в интервале температур 77-300К исследована парамагнитная восприимчивость (χ) соединений TlCoS₂, TlCoSe₂. При этом погрешность измерений составляла ~3%.

Рис. 1. Дифрактограммы кристаллов TlCoS₂(а), TlCoSe₂(б).

Расчет дифрактограммы кристалла TlCoS₂

Nº	θ	$1/I_0$	d _{эксп} , Å	d _{pacч} , Å	hkl	Параметры элементарной ячейки
1	11°51′	40	3.7532	3.7517	006	
2	13°49′	40	3.2282	3.2275	100.007	Тригональная
3	14°23′	100	3.1035	3.1039	102	a=3.726 Å
4	15°59′	90	2.7992	2.7995	104	c=22.510 Å
5	17°57′	40	2.5013	2.5011	009	z=3
6	20°02′	10	2.2508	2.2510	0010	ρ _x =6.026г/см ³
7	26°26′	10	1.7320	1.7315	0013	

Таблица 2.

Таблица 1.

Расчет дифрактограммы кристалла TlCoSe₂

N₂	θ	1/I ₀	d _{эксп} , Å	d _{расч} , Å	hkl	Параметры элементарной ячейки
1	7°47′	10	5.6935	5.6930	004	
2	11°43′	20	3.7957	3.7953	006	Тригональная
3	13°45′	30	3.2445	3.2444	100	a=3.746 Å
4	15°52′	100	2.8196	2.8182	104	c=22.770 Å
5	16°57′	40	2.6446	2.6425	105	z=3
6	17°44′	50	2.5309	2.5302	009	ρ _x =7.365г/см ³
7	19°47′	10	2.2781	2.2772	0010	
8	22°44′	10	1.9951	1.9952	109	
9	23°58′	10	1.8980	1.8977	0012	
10	25°40′	50	1.7795	1.7794	114	
11	28°20′	20	1.6243	1.6266	200.0014	
12	29°31′	10	1.5646	1.5649	118	
13	30°31′	20	1.5181	1.5181	0015	
14	32°48′	20	1.4233	1.4233	0016]

Температурная зависимость обратной парамагнитной восприимчивости $\chi^{-1}(T)$ обоих соединений имеет гиперболический вид (рис.2), что является признаком ферримагнетизма.

Парамагнитная температура Кюри (T_p) определена экстраполяцией зависимости $\chi^{-1}(T)$ на ось температур и оказалось равной ~120К (TlCoS₂) и ~75К (TlCoSe₂).

Рис.2.Температурная зависимость обратной парамагнитной восприимчивости TICoS₂(1), TICoSe₂(2).

 $^{-1}(T)$ Из зависимости χ рассчитаны экспериментальные значения эффективного магнитного момента исследованных соединений, которые оказались равными 4.6μ_Б $(TlCoS_2)$ И 4.85μ_Б (TlCoSe₂). Теоретическое значение эффективного магнитного момента, рассчитанное с учетом чисто спинового значения магнитного момента трехвалентного иона Со³⁺, равно 4.9µ_Б. Как видно, наблюдается хорошее согласие экспериментальных результатов с теоретическими. Как видно, для *TlCoS*₂ наблюдается некоторое отличие результата. экспериментального и теоретического которое говорит о том, что в парамагнитной области ферримагнетика TlCoS₂ в определенном температурном интервале имеется квазидвумерное магнитное упорядочение. Это предположение подтверждается и в авторы работе [13]. которой исследовали низкотемпературную теплоемкость (в адиабатическом калориметре) TlCoS₂ и делают вывод, что слоистое TlCoS₂ соединение является двумерным ферримагнетиком, магнитная структура которого в парамагнитной области в интервале температур 120-180К находится в квазидвумерном магнитном упорядочении.

Электропроводность (σ_{2}), измеренная с точностью до 2%, и коэффициент термоэдс (S) TlCoS₂, TlCoSe₂ (точность измерений 4%) исследовались \sim четырехзондовым компенсационным методом. Образцы для измерений имели форму параллелепипеда с размерами 7.19×4.83 \times 2.04_{MM}(TlCoS₂) И 9.76 × 4.81 × 2.39мм(TlCoSe₂). Омические контакты создавали путем электролитического осаждения меди на торцах образцов. Исследования электрических свойств проводились в температурном интервале 77-400К.

На рис.3 приведена температурная зависимость электропроводности - $\sigma_3(T)$ и коэффициента термоэдс S(T) ферримагнетика TlCoS₂. Как видно из рисунка, S(T) TlCoS₂ несколько увеличивается в температурном интервале 77-115К, достигая максимальной величины

при T \approx 115К. Затем по мере повышения температуры в окрестности T \approx 225К наблюдается изменение типа проводимости от p- до n-типа. Из рис.3 видно, что σ_3 TlCoS₂ уменьшается по мере увеличения температуры от 77К. В окрестности T \approx 115К на зависимости σ_3 (T) соединения TlCoS₂ наблюдается излом, обусловленный, по-видимому, рассеиванием p-типа носителей заряда на спиновых неоднородностях [14], образующихся при переходе спиновой системы из магнитоупорядоченного состояния в парамагнитное.

Рис.3. Температурная зависимость электропроводности (1) и коэффициента термоэдс(2) TlCoS₂.

Отметим, что температура (~115К), при которой на зависимостях $\sigma_3(T)$ и S(T) TlCoS₂ (рис.3) имеет место аномалия, хорошо согласуется с температурой магнитного фазового перехода (~112К) ферримагнетика TlCoS₂ [15].

Рис.4. Температурная зависимость электропроводности (1) и коэффициента термоэдс (2) TlCoSe₂.

Изменение типа проводимости в $TlCoS_2$ от p- до птипа, по-видимому, связано с делокализацией 3d – электронов в парамагнитной области и участием их в переносе заряда. Выше ~350K на зависимости S(T) $TlCoS_2$ наблюдается резкий спад в сторону отрицательных значений, и это обстоятельство указывает на полуметаллический характер проводимости в TlCoS₂, так как уменьшение электропроводимости (рис.3) наблюдается до T \approx 250K, затем σ_3 незначительно увеличивается в интервале 250-325K. Дальнейшее понижение проводимости TlCoS₂ в области 325-400K, повидимому, связано с наступлением собственной проводимости TlCoS₂.

На рис.4 представлена температурная зависимость электропроводности - $\sigma_3(T)$ и коэффициента термоэдс – S(T) соединения TlCoSe₂. Как видно, зависимости $\sigma_3(T)$ и

- [1]. *Y Laurent, P. Picot, R. Pierot*, Bull. Soc. Franc. Miner et Cristallogr., Paris, (1969) 38.
- [2]. A. Kutoglu, Naturwissenchaften B.61, №3 (1974) 125.
- [3]. M. Zabel, K. Range, Z. Naturforsch., 34, No1 (1979) 1.
- [4]. *K. Klepp, H. Boller*, Monatsh. Chem., 110, №5, ()1979в 1045/
- [5]. *M. Rosenberg, A. Knulle, H. Sabrowsky, C. Platte,* Phys. Chem. Solids, 43, №2, (1982)87.
- [6]. *Г. И. Маковецкий, Е.И. Касинский*, Неорган. Материалы, 20, №10, (1984) 1752.
- [7]. К.С.Александров, Н.В.Федосеева, И.П. Спевакова, Магнитные фазовые переходы в галлоидных кристаллах. Новосибирск. (1983). 48 с.
- [8]. М.А.Алджанов, А.А.Абдуррагимов, С.Г.Султанова, М.Д.Наджафзаде, ФТТ, 49. №2. (2007.) 309.
- [9]. *M.Aljanov, M.Nadjafzade, Z.Seidov, M.Gasumov*, Tr. J. Physics., 20, №9 (1996) 1071.

S(T) TlCoSe₂ имеют металлический характер во всем исследованном температурном интервале.

Таким образом, как показали наши исследования TlCoS₂ и TlCoSe₂ оказались ферримагнетиками с низкосимметричной кристаллической структурой. При этом магнитная структура TlCoS₂ в парамагнитной области квазидвумерна. Поэтому двумерный TlCoS₂ ферримагнетик вследствие своего полуметаллического характера электропроводимости может быть базовым материалом для спин-электроники. Ферримагнетик TlCoSe₂ обладает металлическим характером проводимости.

- [10]. M. Aljanov, N.G. Guseinov, G.D. Sultanov and M.D. Nadjafzade, Physics., Stat. Sol. (b) 159, №2 (1990) K. 107.
- Z.Seidov, H. Krug von Hidda, J. Hemberger, A. Loidl, G. Sultanov, E. Kerimova and Panfilov, Phys.Rev.B. 65 (2001) 014433.
- [12]. M. Aljanov, E. Kerimova, S. Mechtieva, M. Nadjafzade, G. Sultanov, G. Akhmedova, Fizika, 8 №1 (2002) 20.
- [13]. Г.В. Лосева, С.Г. Авчинников, В. Сб: Физика магнитных материалов, под. Ред. В.А. Игнатченко, Петраковского, Новосибирск (1983) 60.
- [14]. Р.З. Садыхов, Е. М.Керимова, Ю.Г. Асадов, Р.К. Велиев, ФТТ, 42, №8 (2000) 1449
- [15]. Р.К. Велиев, Р.З. Садыхов, Ю.Г. Асадов, Е. М.Керимова, А.И. Джаббаров, Кристаллография, 53, №1. (2008) 131.