ОСОБЕННОСТИ МЕХАНИЗМА ПЕРЕНОСА ЗАРЯДА В СЛОИСТЫХ КРИСТАЛЛАХ

Н.А.АБДУЛЛАЕВ

Институт Физики им. академика Г.М.Абдуллаева НАН Азербайджана AZ- 1143, Баку, пр. Г. Джавида 33

İnSe laylı kristallarında və PG~3000 və PG~2700 markalı pirolitik qrafitlərdə laylar ρ_{II} və laylara perpendikulyar istiqamətdə ρ_{\perp} xüsusi müqavimətin temperatur asılılığı (T = 5-300 K) tədqiq edilmişdir. Göstərilmişdir ki, bu kristallarda elektrikkeçiriciliyin anizotropiyası yükdaşıyıcıların effektiv kütlələrinin anizotropiyası ilə uyğun gəlmir. Müəyyən edilmişdir ki, \dot{lnSe} kristallarında və PG~3000 və PG~2700 markalı pirolitik qrafitlərdə laylara perpendikulyar istiqamətdə aşağıtemperaturlu keçiricilik əsasən lokal hallar üzrə yükdaşıyıcıların sıçrayışlı keçiriciliyi ilə baş verir.

Исследованы температурные зависимости (T = 5-300 K) удельных сопротивлений в плоскости слоёв ρ_H и в направлении перпендикулярном слоям ρ_{\perp} в слоистых кристаллах *InSe* и пиролитических графитах марок *PG3000* и *PG2700*. Показано, что анизотропия электропроводности ρ_{\perp}/ρ_H не соответствует анизотропии эффективных масс носителей заряда в этих кристаллах. Установлено, что низкотемпературная проводимость в направлении перпендикулярном слоям в слоистом полупроводнике *InSe* и пиролитических графитах марок *PG3000* и *PG2700* осуществляется в основном путём прыжков носителей заряда по локализованным состояниям.

The temperature dependences (T=5-300) of specific resistance in layer planes ρ_{II} and in direction perpendicular to layer ρ_{\perp} in layered crystals InSe and pyrolitic graphites of PG3000 and PG2700 brands are investigated. It is shown that electroconductivity anisotropy ρ_{\perp}/ρ_{II} doesn't correspond to anisotropy of charge carrier effective masses in these crystals. It is established that low-temperature conductivity in the direction perpendicular to layers in layered semiconductor InSe and pyrolitic graphites of PG3000 and PG2700 is realized by charge jumps over the localized states.

1. ВВЕДЕНИЕ.

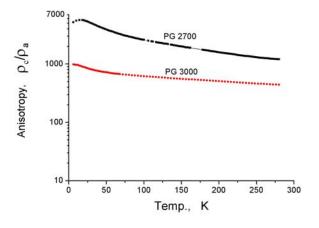
Полупроводники со слоистой кристаллической структурой группы $A^{III}B^{VI}$, такие как $\mathit{InSe},\ \mathit{GaSe},\ \mathit{GaS}\$ и демонстрируют высокую анизотропию электрической проводимости [1-3]. В наиболее типичном кристалле - в графите, анизотропия электропроводности меняется в пределах 10^2 - 10^5 в зависимости от качества образца [4]. Необходимо анизотропия отметить. такая высокая электропроводности в слоистых кристаллах соответствует анизотропии эффективных масс носителей заряда и не может быть объяснена в рамках идеальной кристалла. Например, структуры монокристаллах InSe наблюдается большая анизотропия электропроводности ho_\perp / $ho_{II} \sim 10^2 - 10^3$ (ho_{II} и ho_\perp удельные сопротивления, соответственно, в плоскости слоёв и в направлении перпендикулярном слоям). Согласно же данным циклотронного резонанса в монокристаллах *InSe* [5], эффективные массы электронов перпендикулярно плоскости слоев m_{per} , даже меньше, чем в плоскости слоёв $m_{par}(m_{par}=0.13\ m_e,\ m_{per}=0.08\ m_e).$

В монокристаллах графита, являющихся полуметаллами, эффективные массы электронов и дырок, согласно данным циклотронного резонанса в графите [6,7], соответственно равны $0.03\ m_e$ и $0.06\ m_e$ для движения носителей заряда вдоль слоёв, $14\ m_e$ и $5.7\ m_e$ -перпендикулярно слоям.

Анизотропия сил связи в слоистых кристаллах обуславливает не только особенности их электронных и фононных спектров, но и приводит к специфическому распределению дефектов в слоистых кристаллах. Слабая связь между слоями способствует возможности лёгкого образования характерных дефектов. Наличие многочисленных дефектов стыковки слоёв, дислокаций, лежащих между слоями, такое же неотъемлемое свойство слоистых кристаллов, как и особенности их энергетических спектров.

Предполагая наличие таких плоских протяжённых дефектов, дефектов стыковки слоёв в слоистых полупроводниках, в частности в *InSe*, можно объяснить многие особенности их кинетических и гальваномагнитных свойств. Например, формирование двумерного газа носителей заряда, проявляющегося в специфическом, "двумерном" поведении осцилляций Шубникова-де Гааза [8], квантовом эффекте Холла [9] и многое другое.

В работе [10] было показано, что существование большого числа таких дефектов в слоистом *InSe* обуславливает различные механизмы переноса заряда в плоскости слоёв и направлении перпендикулярном слоям. Дело в том, что наличие дефектов приводит к прерыванию волновых функций в направлении перпендикулярном слоям и возникновению локализованных состояний. В результате, при низких температурах (T<150K) проводимость монокристаллов *n*-


Н.А.АБДУЛЛАЕВ

InSe плоскости слоёв обусловлена термовозбуждёнными примесными электронами по протяжённым состояниям, время В TO перпендикулярно слоям перенос заряда осуществляется прыжков электронов по локализованным состояниям, находящихся в узкой полосе энергий вблизи Ферми (т.н. прыжковая проводимость переменной длиной прыжка) [10]. Различные механизмы переноса заряда обуславливают высокую анизотропию проводимости в слоистом *InSe*, возрастающую с понижением температуры. Целью настоящей работы являлось выявление механизма переноса заряда в направлении перпендикулярном слоям, природы анизотропии электропроводности слоистых монокристаллах графитах, а также наиболее общих закономерностей в процессах переноса заряда в слоистых кристаллах.

2. ДЕТАЛИ ЭКСПЕРИМЕНТА И ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Измерения проводились в интервале температур 5 ÷ 300К по селективной методике на переменном токе частотой 20,5Гц, величина тока не превышала 1 мА. Образцы для исследований электропроводности графитовых образцов получались последовательным расслоением до толщин 20-60 мкм. Удельные сопротивления определялись усовершенствованным четырёхзондовым комбинационным методом Шнабеля [11,12]. По два омических контакта посредством графитовой пасты наносились на каждую сторону образца плоскопараллельного В прямоугольной геометрии. Значения удельных сопротивлений вычислялись по специально написанным программам на компьютере экспериментально из измеренных параметров, используя известные формулы [11,12].

На рисунке 1 приведены данные температурных зависимостей анизотропии удельных сопротивлений ρ_c / ρ_a исследованных нами образцов пиролитических графитов марок PG3000 и PG2700, отличающихся температурой термообработки (здесь ρ_a и ρ_c -удельные сопротивления, соответственно, в плоскости слоёв и в направлении перпендикулярном слоям.

Рис.1. Температурные зависимости анизотропии удельных сопротивлений в графитах марки $\Pi\Gamma$ 3000 и $\Pi\Gamma$ 2700.

Как рисунка, анизотропия видно из электропроводности меньше в образцах РСЗ000, главным образом за счёт меньших значений ho_c . Как известно, с увеличением температуры термообработки азимутальная упорядоченность улучшается графита, уменьшается расстояние между слоями, увеличивается плотность образцов. Это сопровождается уменьшением количества протяжённых дефектов, дефектов стыковки слоёв И, следствие, приводит к меньшим значениям сопротивления удельного В направлении перпендикулярном слоям ho_c .

Как видно из рисунка 1, с понижением температуры в монокристаллах графита анизотропия электропроводности увеличивается. Как и в случае *InSe*, это обусловлено различием в механизмах переноса плоскости слоёв направлении И В перпендикулярном слоям. Если в плоскости слоёв с понижением температуры величина удельного сопротивления направлении падает, TO перпендикулярном слоям проводимость в основном имеет термоактивационный характер.

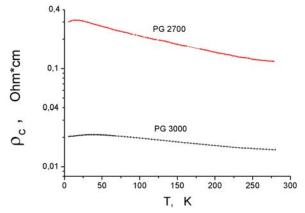


Рис.2. Температурная зависимость удельного сопротивления графитов марки $\Pi\Gamma$ 3000 и $\Pi\Gamma$ 2700 перпендикулярно плоскости слоёв $\rho_c(T)$.

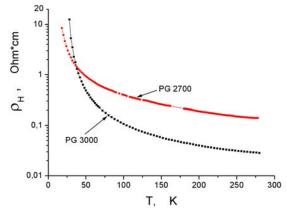
На рисунке 2 приведены температурные зависимости удельных сопротивлений $ho_c(T)$ графитов марки $\Pi\Gamma$ 3000 и ПГ 2700 перпендикулярно плоскости слоёв. Отметим главную особенность температурного поведения $\rho_c(T)$: при высоких температурах (выше 35К в $\Pi\Gamma$ 3000 и 14К в $\Pi\Gamma$ 2700) величины удельного сопротивления $\rho_c(T)$ с понижением температуры увеличиваются, а при низких температурах наблюдается проводимость "металлического" типа - понижение удельного сопротивления с уменьшением температуры. Таким образом, мы наблюдаем своеобразный переход полуметалл-полупроводник, обусловленный изменением температуры. Отметим, что в наиболее совершенных монокристаллах графита температура полуметалл-полупроводник равна примерно 80К [13]. Переход полуметалл-полупроводник экспериментально наблюдается во многих материалах, но необычным является то, что в образцах графита совершается переход полуметалл-полупроводник "металлическим" c

ОСОБЕННОСТИ МЕХАНИЗМА ПЕРЕНОСА ЗАРЯДА В СЛОИСТЫХ КРИСТАЛЛАХ

характером проводимости при низких температурах и "диэлектрическим", или активационным – при более высоких температурах.

3. ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Если предположить, что проводимость в графитовых образцах перпендикулярно слоям осуществляется параллельно по двум каналам - "металлическому" σ_M и "активационному" σ_H , то суммарная проводимость σ равна


$$\sigma = \sigma_M + \sigma_H \tag{1}$$

где "металлическая" проводимость

$$\sigma_M = \rho_M^{-1} = (\rho_0 + AT)^{-1}$$
 (2)

Величины ho_0 и A можно определить из рисунка 2 при $T \to 0$. В таблице 1 приведены значения ho_0 и A для образцов графитов марки $\Pi\Gamma$ 3000 и $\Pi\Gamma$ 2700. Теперь, вычитая из результирующей σ величину σ_M , определим "активационную" часть проводимости σ_H , а затем и $ho_H = \sigma_H^{-1}$. Вычисленная таким образом температурная зависимость $ho_H(T)$ для образцов графитов марки $\Pi\Gamma$ 3000 и $\Pi\Gamma$ 2700 представлена на рисунке 3.

Хорошо просматривается экспоненциальное возрастание величины сопротивления с уменьшением температуры.

Puc.3. Температурная зависимость "активационной" части удельного сопротивления $ho_H(T)$ графитов марки $\Pi\Gamma$ 3000 и $\Pi\Gamma$ 2700.

Подгонка методом наименьших квадратов температурной зависимости удельного сопротивления $ho_H(T)$ под зависимости вида:

$$\rho_H(T) = \rho_{H0} \exp(T_0 / T)^x$$
 (3)

выявила, что наилучшее спрямление в наибольшем температурном интервале наступает при $x=\frac{1}{2}$ с параметрами ρ_{H0} и T_0 , приведенными в таблице 1.

Таблица 1. Параметры температурных зависимостей электропроводности.

Samples	ρ ₀ , Ohm∙cm	Coefficient A, Ohm cm K ⁻¹	ρ _{HO} , Ohm∙cm	Parameter T_0 , K
ПГ 3000	0,0201	4·10 ⁻⁵	3,86·10 ⁻³	$1,2\cdot 10^3$
ПГ 2700	0,292	1,8·10 ⁻³	3,47·10 ⁻²	$0.55 \cdot 10^3$

Таким образом, анализ экспериментальных данных показывает, что проводимость в направлении перпендикулярном слоям хорошо описывается выражением

$$\rho_H(T) = \rho_{H0} \exp(T_0 / T)^{1/2} \tag{4}$$

одномерной прыжковой справедливым при проводимости с переменной длиной прыжка [14]. В работе [15] показано, что проблема дефектов стыковки слоёв сходна с задачей одномерно-разупорядоченных цепочек и предложено зарядовый транспорт поперёк слоёв рассматривать посредством одномерной модели фононно-стимулированных прыжков. предполагается, что каждый слой представляет собой плотноупакованную большую молекулу, составленную из сильно связанных атомов, а в целом слоистый кристалл возможно рассматривать как цепочку из больших слабо связанных молекул с разупорядочениями.

Интересно отметить, что температурные зависимости вида (4) наблюдались и в объёмных образцах углеродных наночастиц, полученных из мелкодисперсного алмаза отжигом при различных температурах [16]. Полученные таким образом образцы состояли в основном из многослойных сфер с расстояниями между слоями внутри сферы $\sim 3,5\,A^0$, что соответствует расстоянию между слоями в квазидвумерных графитах. Эти сферы объединены в агломераты с размерами $\sim 500 \div 5000\,A^0$. Объёмный образец состоит из этих агломератов. Показано, что величина параметра T_0 зависит от температуры отжига.

Предположение о том, что проводимость в графитовых образцах перпендикулярно слоям осуществляется параллельно по двум каналам - "металлическому" σ_M и "активационному" σ_H вполне вероятно. Высокая концентрация плоских протяжённых дефектов, дефектов стыковки слоёв приводит к тому, что

Н.А.АБДУЛЛАЕВ

в направлении перпендикулярном слоям существуют лишь узкие, "нормальные" области с упорядоченной стыковкой слоёв. Проводимость по таким "нитевидным" каналам имеет "металлический" характер с высоким сопротивлением. В значительно большей части образца в направлении перпендикулярном слоям упорядоченность стыковки слоёв нарушена и проводимость осуществляется путём термоактивированных прыжков носителей заряда по локализованным состояниям, т.е. имеет активационный характер. Конкуренция этих двух механизмов переноса заряда приводит к наблюдению температурной зависимости удельного сопротивления

перпендикулярно плоскости слоёв $ho_c(T)$, приведенной на рис.2. При низких температурах проводимость в направлении перпендикулярном слоям имеет "металлический" характер. С увеличением температуры сопротивление возрастает и начинает преобладать термоактивированная проводимость.

Таким образом, в слоистом графите, как и в слоистом полупроводнике *InSe*, наблюдаемая высокая анизотропия проводимости, несоответствующая анизотропии эффективных масс носителей заряда, может быть объяснена лишь с учётом реальной кристаллической структуры слоистых кристаллов.

- [1]. A.H.M. Kipperman, A.I. Peynenborgh and J.G.A. M. van den Dries. Proceedings of the International Conference on Semiconductors. Cambridge, Mass., p.822, (1970).
- [2]. Schmid, E. Mooser. Helv. Phys. Acta, 45, 870, 1972.
- [3]. *R.H. Tredgold and A.C. Clark.* Solid State Commun., 7 (1), 1519, 1969.
- [4]. A.Natori. J. Phys. Soc. Japan, 55 (12), 4370, 1986
- [5]. E. Kress-Rogers, R.J. Nicholas, J.C. Portal and A. Chevy, Sol. State Commun., 44 (3), 379, 1982.
- [6]. J.K. Galt, W.A. Yager, H.W. Ir. Dail. Phys. Rev., 103 (5), 1586, (1956).
- [7]. P. Nozieres. Phys. Rev., 109 (5), 1510, 1958.
- [8]. G.L. Belenky, M.O. Godzhaev, V.N. Zverev, JETP Lett., 43 (12), 770, 1986.

- [9]. G.L. Belenky, E.A. Virodov, V.N. Zverev, JETP, 94 (12), 254, 1988.
- [10]. G.L. Belenky, N.A. Abdullayev, V.N.Zverev and V.Ya. Shteinshraiber, JETP Lett., 47 (10), 584, 1988.
- [11]. P. Schnabel, Zeits. Angew. Phys., 22 (2), 136, 1967.
- [12]. F.N. Abdullayev, T.G. Kerimova, N.A. Abdullayev, Trans. ANAS, 25 (5), 83, 2005.
- [13]. W. Primak, L.N. Fuchs, Phys.Rev., 95 (1), 22, 1954.
- [14]. V.K.S. Shante, C.M. Varma, A.N. Bloch, Phys. Rev. B 8 (10), 4885, 1973.
- [15]. A. Khater, M. Balkanski, C. Julien, M. Weber, Phys. Rev. B 37 (14), 8278, 1988.
- [16]. A.I. Romanenko, O.B. Anikeeva, A.V. Okotrub, L.G. Bulusheva et. al., Phys. of Sol. St., 44 (3), 468, 2002.