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Characterization of a single Josephson junction circuit numerically studied by means of periodic tridiagonal Hermitian eigenvalue 
problem that arises from quantum mechanical formulation. The wave function, ψ(θ), representing the electron pairs inside the junction, is 
determined by solving the so-called general form of Mathieu-type differential equation. Eigenenergy spectra and corresponding 
eigenfunctions are found in the regime of charge qubit and examined by using different gate voltages (i.e. ngs). Some representative results 
are obtained for lowest eigenenergies and corresponding eigenfunctions.  
 
 
1. INTRODUCTION 

There has been an increasing interest in the possibility of 
fabricating solid-state devies for quantum computing for ten 
years [1]. Superconducting devies such as superconducting 
quantum interference devices (SQUIDs), quantum boxes and 
superconducting single electron transistors (SSETs) are 
suitable candidates for this purpose. The physical realizations 
of a solid-state qubit is provided by a Cooper pair box which 
is a small superconducting island connected to a large 
superconducting electrode, a reservoir, through a Josephson 
junction. Two charge states of the box, differing by one 
Cooper pair, are coherently mixed by the Josephson coupling 
as was confirmed experimentally. 

On the other hand, the Rapid Single-Flux-Quantum 
(RSFQ) electronics are considered as possible 
complementary electronics to Josephson quantum computing 
networks for the control and readout of the quantum state 
[2,3], as reflected in forecast studies (e.g., in the European 
Network for Superconductivity (SCENET) and Quantum 
Information Science and Technology (QIST) roadmaps [4]). 
The fabrication and controlled manipulation of Josephson 
junction qubits is possible by using present-day technologies 
[1]. It should be stated that theoretical and numerical 
approaches can estimate the appropriate system parameters 
for laboratory researches [5–8]. Whatever the application, 
superconductivity has been linked to the concepts of long 
range order, coherence and macroscopic behavior [9]. By 
evaluating the findings from the theoretical studies, the 
minimization of negative impacts such as decoherence and 
nonlinearity can be achieved at a certain range. For instance, 
those efforts have made possible to create a plenty of 
applications for a variety of purposes such as chaotic 
communication system, voltage standards, SQUID, ultra-
sensitive flux measurement systems and synchronized 
superconducting devices etc. [5,6,8,10]. It is widely known 
that quantum dynamics of a superconducting device can be 
described in two completely different but equivalent 
mathematical formalisms such as Heisenberg and 
Schrodinger formalisms [11]. There are many studies in the 
literature that their formulations are based on Heisenberg 
picture [1,12–14]. In one of our previous study [15], a single 

Cooper pair box (SCB) was modeled both analytically and 
numerically. Based on Schrodinger formalism, the solution 
was obtained with respect to phase difference. We proved 
that this model gave some interesting results so as to 
determine voltage-current (V − I) behavior for various ngs. 
For example, it was shown that Josephson and combined 
quasi-particle tunneling were encountered and some 
similarities with experimental findings were discussed.  

In the present study, we will improve the preceding study 
for the integral and half-integral dimensionless charge 
numbers, ngs. In this manner, we have modelled the junction 
circuit and formulated the general form of Shrodinger 
equation in Section 2. In section 3, the numerical results are 
discussed in terms of eigenvalues. A relationship between 
eigenvalue and mean supercurrent is also recommended. 
Consequently, some concluding remarks are outlined in the 
last section. 
 
2. THEORETICAL BACKGROUND 

The simplest form of the junction circuit is depicted in 
Fig.1. Tunnel junction is characterized by a junction 
capacitance Cj and Josephson coupling energy Ej . A control 
gate voltage Vg is applied to the system via a gate capacitor 
Cg with an electrostatic energy, Ec. The superconducting 
condensate of the Cooper pairs in the superconducting island 
is represented by the electron pair wave function.  

 

 
 

Figure 1. The simplest circuit model of a Josephson junction (JJ) 
including a gate voltage Vg and gate capasitance Cg. 
Corresponding gate charge is Qg = 2eng = CgVg. 

 
Leaving the detail of the formulation to our earlier study [15], 
the Hamiltonian and time-independent part of Schrodinger 
equation for a well-defined wave function ψ(θ) read as,  
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Eq.1(b) is, in principle, a general form of the Mathieu-type 
equation as the spatial (i.e. phase difference) and temporal 
statement of the junction in the interval [0, 2π] with an 
appropriate boundary condition. Furthermore, the problem 
can be simplified for numerical purposes as:  
 

εψψ
θ
ψ

θ
ψ

−=+− q
d
dip

d
d
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                    (2) 

 
Here, ε=2eV/Ec holds as the eigenvalue of the system, the 
real functions p=2ng and q=2Ej/EcCos (θ) - ng

2 will construct 
the matrix elements under the periodic boundary conditions 
of  ψ(0) = ψ(2π) and ψ'(0) = ψ'(2π). 
 
Mathieu type eigenvalue problem in Eq.(2) can be solved 
efficiently by using finite difference representation on a grid 
of equispaced points. Based on central difference operators, 
δψj = (ψj+1 − ψj−1)/2 and δ2ψj = (ψj+1 − 2ψj + ψj−1), Eq.(2) 
can be transformed into 
 

jjjjjjj efe λψψψψ =+++ +
∗

− 11  

  1.,..,2,1,0 −=∀ Nj                         (3) 
 
where h is the step size for discretization scheme (h should 
not be confused with the Planck constant), N is the number of 
subintervals in the grid, satisfying N + 1 = 2π/h and ej* is the 
complex conjugate of ej. The terms in Eq.(3) are given as 
ej=1+ih pj /2, fj=h2qj -2 and λ=-h2ε. In the discritization 
scheme, the lower and upper ends of wave functions are 
specified by periodic boundary conditions: ψ−1 = ψN−1 and ψN 
= ψ0. With the help of these expressions, one can write the 
matrix form of Eq. (3) as an eigenvalue problem Aψn= λnψn 
over all indices. Here A is given by,  
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as a complex NxN-dimensioned periodic tridiagonal 
coefficient matrix and λn defines the eigenvalue of nth state. 

It is widely known that periodic tridiagonal matrices 
typically arise from discretization of a second or higher order 
differential equations subjected to periodic boundary 
conditions [16–18]. For this reason, the matrix A is said to be 
periodic tridiagonal due to the nonzero terms at the corners 
such as A0,N−1 = e0 ≠ 0 and AN−1,0 = e*N−1 ≠ 0. These terms 
come into existence because of the periodic boundary 
conditions. The numerical solution of the system is evaluated 
by using the conventional LAPACK eigenvalue solver. 

In this study, the number of subintervals is chosen to be N 
= 4000 and the physical parameters are considered as in [15]. 
The preference of such parameters is based on some 
experimental and technical studies [6,8]. According to these 
studies, the parameters namely Cooper pair charge energy, 
junction energy and energy gap are Ec = 54µeV , Ej = 
0.1253µeV and Δ = 0.189meV , respectively. Note that, these 
parameters hold 2Δ > Ec >> Ej as in [1,19] and characterize a 
charge qubit system. Therefore, the most of the simulations 
have been carried out for Ej/Ec = 2.3×10−3. 
 
3. RESULTS AND DISCUSSIONS 

For a complete picture of eigenenergies with 
corresponding eigenstates, the lowest four eigenstates are 
depicted as a function of ng in Fig.(2). As also known from 
the literature, our situation is rather simple since the 
eigenstates are very close to the pair states at integral and 
half-integral ngs [13,14]. 
 

 
Figure 2. Eigenenergies as a function of dimensionless charge 

number ng. Insets indicate the adjacent eigenenergies at 
ng=0.5 and ng=1. 

 
Among those dimensionless charge numbers, ng = 1/2 

case is frequently called as sweet spot for charge qubits since 
the negative effects of dephasing and noise can be mostly 
eliminated at this operational condition where the optimal 
working point is also satisfied [20]. Energy difference 
between the leading states namely |0> and |1> (i.e at the 
sweet spot depicted in the inset of Fig.(2) is found to be 
around 2Ej/Ec = 0.0046469 which satisfies a well-known 
parametrical relation from the literature (see for example 
[13,14,20]). In order to show the detailed numerical results, 
eigenenergies with respect to eigenstates are tabulated in 
Table 1 for various ngs. 
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Table 1. Eigenenergies for the half-integral and integral charge numbers. 

 
 

In the cases of integer ng values, the closest energy 
difference between eigenstates of |1> and |2> is found around 
Ej/(2Ec) = 0.0010036 at ng = 1. Thus the energy difference 
for ng is higher than the case for the integer ng.  
 
4. CONCLUSIONS 

A numerical study on the eigenvalues of a 
superconducting circuit is realized by using the Schrodinger 
formalism. Using the methodology of finite difference 
method, the eigenenergies and corresponding eigenfunctions 

are sensitively determined. Consequently, we claim that our 
solution method for similar circuit problems can be clearly 
utilized to obtain the full eigenstates of the system. In 
addition, our approach is very useful in order to find out the 
initial estimation of experimental parameters in the 
explorations of charge qubits. This method can be compared 
with the real experiments determining the gate voltage-device 
voltage relationship, if the same experimental inputs are 
adjusted to the model. 

 
_________________ 
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