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The method of the effective Hamiltonian (MEH) is offered for the calculation of the non-dissipative thermomagnetic current in the 
quantum wire. This method includes the temperature in the Hamiltonian as opposed to the previous researches. The calculation is done in the 
coherent-state representation for the parabolic quantum wire and non-degenerate statistics.  

Calculated by the instrumentality of MEH the non-diagonal component of the thermomagnetic tensor is in full accord with results 
obtained previously. It should be noted that MEH needs no account of the electron diamagnetism.  

 
In the presence of an electric field E

r
, a temperature 

gradient ∇T and a magnetic field H
r

, the current density has 
the form 

                                                           

                   TEj kikkiki ∇−= βσ                            (1) 
 

Here σik and βik are the components of the conductivity 
tensors. The non-dissipative component of the 
thermomagnetic tensor βyx was calculated by many authors 
[1]. But in those papers the temperature was not included in 
the Hamiltonian because the temperature is related to the 
statistical force. 

The method including the temperature in the 
Hamiltonian was offered in [2] for a bulk sample. The paper 
[2] deals with the calculation of the thermomagnetic current 
based on the assumption that the presence of a temperature 
gradient in the system is analogous to an effect of a certain 
effective external electric field. This is one more method of 
calculating the thermomagnetic current based on the 
introduction of an effective Hamiltonian. As distinct from [2] 
the purpose of the present paper is using given method for the 
one of the nanoelectronics main object, the quantum wire 
(see for example [3]). 

All the calculation in this paper are made in the basis of 
coherent states. 

Let the sample of the crystal wherein the external strong 
magnetic field H

r
 is directed along the z axis be limited by 
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placed in a thermostat so that for all the points of the space 

with xL
2

1
x −≤  the temperature is kept constant and equal to 

T=T0=const, and for all the points of the space with xL
2

1
x ≥   

T=Tf=const. The temperature gradient in the sample is 
directed along the x axis, i.e. T=T(x) for all points satisfying 

the inequality xx L
2

1
xL

2

1
<<− . 

Let as suppose that we have to deal with a weakly non-
uniform system. Then the temperature deviation from its 
equilibrium magnitude is small, say, in the simplest case of 
constant temperature gradient 
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where δ<<1. 

By assumption T=T(x) and does not depend on y or z. 
Then in the absence of the external electric field (electrostatic 
potential ϕ=0) and the chemical potential ξ=const we derive 
from (1) and (2) 
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We calculate this current, starting from the well know 

expression 
                           yy v̂ˆenTrj ρ−=                               (4) 
 

where (-e) is the electron charge, n is the density of 
conductivity electrons, ρ̂  is the non-equilibrium electron 
density matrix: 

                                                  
               [ ]kT/)Ĥ(expZˆ 1 ξρ −−= −                  (5) 
 

Here Z is the partition function and k is Boltzmann’s 
constant. In the expression  
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is expanded in δ<<1. Henceforth we restrict ourselves to the 
first-order terms in δ 
                                                              
                               gradTrkĤĤ 0

r
−= .                       (7) 

 
The second term in equation (7) is connected with the 

inclusion of the temperature gradient effect on the 
Hamiltonian of the equilibrium system 0Ĥ . By analogy with 
the electric field, we assume that the temperature is the 
potential of a certain external field with the intensity, – grad 
T. The corresponding potential energy takes the form, 

gradTrk ⋅−
r , with in the case under consideration is reduced 

to −kδT0/Lx. Consequently, in constructing the Hamiltonian 
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(7) we proceed from the formal correspondence of the 
electrostatic potential ϕ with temperature T and the absolute 
value of the electron charge e with Boltzmann constant k. 

Finally, instead of equation (5) we obtain 
                                                        
                     )Ĥexp(Zˆ 1 γρ −= −                             (8) 

 
where 
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                                                                                            (10) 
 
The Hermiticity of the operator V̂  is realized by the 

symmetrization of the product of the operators 0Ĥ  and x. 
From equation (8) one can see that in the presence of a 

small and uniform temperature gradient the density matrix of 
the system is similar to that of this same system in the 
absence of the temperature gradient, but exposed to an 
external field whose contribution to the Hamiltonian of the 
system is given by the operator V̂ . It is clear from (10) that 
V̂  is a small perturbation, as it is proportional to the 
parameter of smallness δ. Hence, we expand the density 
matrix (8) in a series using perturbation theory and restrict 
ourselves to a linear approximation of the parameter of 
smallness: 

 
                               10 ˆˆˆ ρρρ +=                               (11) 
 

where the equilibrium matrix is given by 
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1

0 −−= −                    (12) 
 

and the non-equilibrium addition to the density matrix is 
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Starting from the well known expression for the velocity 

operator  
 
                        [ ]y,Ĥ)/i(v̂ y h=                            (14) 
 

we write equation (4) to first order in δ: 
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In present paper 0Ĥ  is 
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i.e. we consider a parabolic quantum wire (QW) in a 
quantizing magnetic field H

r
⎟⎜z, and vector potential A

r
=(0, 

Hx, 0). The QW is directed along the y axis, ω0 characterizes 
the parabolic potential of the QW, ωc =eH/mc is the cyclotron 
frequency. 

The coherent states (CS) for the quantum system 
described by the Hamiltonian 0Ĥ  are constructed in [4]. To 
calculate the current (15), we shall use the following 
expressions from [4]: 
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1ÂÂĤ
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α, β, ky  are the quantum numbers. 

To calculate the current we adopt the scheme from [2]: 
express all quantities of the operators ±

αÂ , ±
βA ; arrange the 

operators, replace the operators by their eigenvalues; 
integrate over α, β, ky, using the standard integrals. We omit 
the terms proportional to the product sp )Â()Â( −+  at p≠s 

and to l
yk  at l=1,3,5,…, as they give zero when integrated 

over α, β, and ky respectively. 
The first term in (15) equals to zero when integrated over 

ky. Making the cyclic permutation we transform the second 
term in (15) to the form 
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Making use of equations (17) x can be expressed in terms 
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The integration over γ′ in third term is reduced to 
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The prime denotes that in Ax̂  substitutions 

,Â)/C(Â −− → αα ωh   )exp(Â)/C(Â ωγω αα hh ++ →    
and   x0→x0γ   must be done,  
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Finally from equation (15) we derive 
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L

ienj 0000
x

y ξρδγ
−=

h
          (25) 

 

From (25) one can see that the zero-order term tends to 
zero. It is therefore enough to see the equilibrium grand 
partition function in equation (25). 

It is easy to shown that  
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Substituting (12), (17), (26), 0x̂  from (18) into (25) and 

using the scheme for current calculation [2] we finally obtain
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As is seen from the comparison of equations (27) and (3) the 
coefficient at ( 1

xTL−− δ ) coincides with the expression for βyx. 
Taking into account the expressions (43), (46) [2] we 

may write the entropy S of the parabolic QW directed 
perpendicular to the quantizing magnetic field. Introducing S 
in the expression for βyx we derive the well known result for 
the βyx in the nondegenerate case [5]: 
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It should be noted that as opposed to the previous 
researches (see, for example, [6]) given method of the 
effective Hamiltonian needs no account of the diamagnetism. 

I wish to express my sincere thanks to Acad. 
Hashimzadeh F.M. for helpful discussion. 
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TERMOMAQNİT CƏRƏYANLARI HESABLAMAQ ÜÇÜN YENİ METOD.  
KVANT MƏFTİLİ 

 
Kvant məftilində qeyri-dissipativ termomaqnit cərəyanları hesablamaq üçün effektiv Hamiltonian metodu (EHM) təklif edilib. EHM-da 

mövcud ədəbiyyatdan fərqli olaraq temperatur Hamiltoniana daxil edilib. Hesablamalar koherent hallar təsvirində, parabolik kvant məftili və 
cırlaşmamış statistika üçün aparılmışdır.  

Alınan termomaqnit tenzorunun qeyri-diaqonal tərkib hissəsi başqa üsullarla hesablanmış adı çəkilən tenzorun ifadəsi ilə üst-üstə düşür. 
Fərqli olaraq, EHM-dan istifadə etdikdə elektron diamaqnetizminin nəzərə alınmasına ehtiyac yaranmır. 

 
Р.Г. Агаева 

 
НОВЫЙ МЕТОД РАСЧЕТА ТЕРМОМАГНИТНОГО ТОКА.  

КВАНТОВАЯ ПРОВОЛОКА 
 
Для расчета недиссипативного термомагнитного тока в квантовой проволоке предложен метод эффективного гамильтониана 

(МЭГ). В этом методе в отличие от предшествующих работ удается ввести температуру в гамильтониан. Расчеты произведены в 
представлении когерентных состояний для параболической квантовой проволоки и невыроҗденной статистики. 

Полученное этим методом выражение для недиагональной компоненты термомагнитного тензора совпадает с известным из 
литературы выражением. Следует отметить, что при использовании МЭГ не возникает необходимости в учете диамагнетизма 
электронов. 
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