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The method of the effective Hamiltonian (MEH) is offered for the calculation of the non-dissipative thermomagnetic current in the
quantum wire. This method includes the temperature in the Hamiltonian as opposed to the previous researches. The calculation is done in the
coherent-state representation for the parabolic quantum wire and non-degenerate statistics.

Calculated by the instrumentality of MEH the non-diagonal component of the thermomagnetic tensor is in full accord with results
obtained previously. It should be noted that MEH needs no account of the electron diamagnetism.

In the presence of an electric field E,a temperature

gradient VT and a magnetic field H , the current density has
the form

i =owE - BV, T (D

Here o and Sy are the components of the conductivity
tensors. The non-dissipative = component of the
thermomagnetic tensor Ay was calculated by many authors
[1]. But in those papers the temperature was not included in
the Hamiltonian because the temperature is related to the
statistical force.

The method including the temperature in the
Hamiltonian was offered in [2] for a bulk sample. The paper
[2] deals with the calculation of the thermomagnetic current
based on the assumption that the presence of a temperature
gradient in the system is analogous to an effect of a certain
effective external electric field. This is one more method of
calculating the thermomagnetic current based on the
introduction of an effective Hamiltonian. As distinct from [2]
the purpose of the present paper is using given method for the
one of the nanoelectronics main object, the quantum wire
(see for example [3]).

All the calculation in this paper are made in the basis of
coherent states.

Let the sample of the crystal wherein the external strong

magnetic field H is directed along the z axis be limited by

1
L

1 1
the planes X =X :_ELX and X = X; :ELX, Y; :_E y

1 1 1
and Y, :ELy, p2 :_ELZ and z; :ELZ. The sample is

placed in a thermostat so that for all the points of the space

1
with X < ——L, the temperature is kept constant and equal to
2

1
T=To=congt, and for all the points of the space with x > E L,

T=Ti=const. The temperature gradient in the sample is
directed along the X axis, i.e. T=T(x) for all points satisfying

1 1
the inequality — E L, <x< E L,.

Let as suppose that we have to deal with a weakly non-
uniform system. Then the temperature deviation from its
equilibrium magnitude is small, say, in the simplest case of
constant temperature gradient

T(x) =T{1+ 5[XL;1 +%ﬂ @)

where o<<1.
By assumption T=T(X) and does not depend on y or z
Then in the absence of the external electric field (electrostatic

potential =0) and the chemical potential £&=const we derive
from (1) and (2)
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We calculate this current, starting from the well know
expression

j, =—enTrpv, )

where (-€) is the electron charge, n is the density of
conductivity electrons, p is the non-equilibrium electron

density matrix:
p=2"expl-(A-¢)/kT] 5)

Here Z is the partition function and K is Boltzmann’s
constant. In the expression

1: 1-6 l+1 i (6)
L, 2)|T,

X

is expanded in <<l. Henceforth we restrict ourselves to the
first-order terms in O

H = I:|0 —krgradT . (7

The second term in equation (7) is connected with the
inclusion of the temperature gradient effect on the

Hamiltonian of the equilibrium system H. By analogy with

the electric field, we assume that the temperature is the
potential of a certain external field with the intensity, — grad
T. The corresponding potential energy takes the form,
— ki - gradT , with in the case under consideration is reduced

to —koTy/Ly. Consequently, in constructing the Hamiltonian
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(7) we proceed from the formal correspondence of the

electrostatic potential ¢ with temperature T and the absolute

value of the electron charge e with Boltzmann constant k.
Finally, instead of equation (5) we obtain

p=Z"exp(-Hy) ®)
where
y=(KT,)Y,  H=H,-&+V )
X 1) 6 x o6~ X X ~ ~
V=0 —+=|-——-= H,—+—H,+H
é(LX ZJ 7/ LX 2[ ° Lx Lx ° OJ
(10)

The Hermiticity of the operator V s realized by the
symmetrization of the product of the operators H o and X.

From equation (8) one can see that in the presence of a
small and uniform temperature gradient the density matrix of
the system is similar to that of this same system in the
absence of the temperature gradient, but exposed to an
external field whose contribution to the Hamiltonian of the

system is given by the operator V. It is clear from (10) that

V is a small perturbation, as it is proportional to the

parameter of smallness o. Hence, we expand the density
matrix (8) in a series using perturbation theory and restrict
ourselves to a linear approximation of the parameter of
smallness:

ﬁ:ﬁ0+ﬁl an

where the equilibrium matrix is given by

Do =2 expl- (H, - £)y] (12)

and the non-equilibrium addition to the density matrix is
7 ~ ~ ~
- “ ' ' '
Pr=—Po | dy'exp(Hoy' V exp(~Hoy')  (13)
0

Starting from the well known expression for the velocity
operator

v, =(i/mA.y| (14)

we write equation (4) to first order in J:

i, = ~(ien/ )T (B[ Fo, Y]+ 26V v ]+ 21l Ao, v])
(15)

In present paper I:|o is

1o . s ] MoZ(X*+2Z%)
=—|p2+(p, + Mo x)*+p2 |+ ———— "1
0 zm[px (py a)c ) px] 2

(16)

i.e. we consider a parabolic quantum wire (QW) in a
quantizing magnetic field H |z, and vector potential A= (o,
Hx, 0). The QW is directed along the Y axis, @y characterizes
the parabolic potential of the QW, @, =eH/mc is the cyclotron
frequency.

The coherent states (CS) for the quantum system
described by the Hamiltonian I:|0 are constructed in [4]. To

calculate the current (15), we shall use the following
expressions from [4]:

Hy=H,+H,+H,
2 ~2
: A L) g (@) P an
Hl:ha)( \, +§j, szha)o(AﬂAﬂ +§), Hsz[goj ﬁ
A+=iei"”{/ma)(x—xo)i |bx :| 0% = 02 + w2
J2n Vma |’ o
R 1 oV b (18)
A =—e"% mo,z+ P._| 5 :_(_cj y
2n Ma, ® ) Mo,
[A_AI]=1, i=a,p (19)
.0 ik, y
(lha—Hojl//zo, l//:‘a>‘ﬂ>‘ky>, ‘ky >=e (20)

Ala>=ala> A =pB> <da>=1 <pf>=1
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a, f3, K, are the quantum numbers.
To calculate the current we adopt the scheme from [2]:

express all quantities of the operators Ai . A arrange the

operators, replace the operators by their eigenvalues;
integrate over a, f3, K, using the standard integrals. We omit

the terms proportional to the product (A+ )P( A )° at p=s
and to kly at 1=1,3,5,..., as they give zero when integrated

over a, f3, and k, respectively.

The first term in (15) equals to zero when integrated over
k,. Making the cyclic permutation we transform the second
term in (15) to the form

Tr:bl [F'o ’Y] = _Tr/bo [(% - ﬂ_i

The denotes substitutions

A —>(Clho)A, A —(Clho)A exp(hoy)
and Xg—>Xoy must be done,

prime that in X,

C=1-exp(-hwy) (24)
Finally from equation (15) we derive
.dendy_ . - ~ [
Jy =—L—yTrpo( Ao-&% Aoy @9

jx—zil_x(ﬁomx H, )- I:on}

TV, y)= _LiTr/BoX[l:'o’y] @1

X

Making use of equations (17) X can be expressed in terms
At At
A, Age

Zril]—w(e“”‘ A +e A ) (22)

A

X=X+ Xy, X, =
The integration over y’in third term is reduced to

(23)

N

! From (25) one can see that the zero-order term tends to
zero. It is therefore enough to see the equilibrium grand
partition function in equation (25).

It is easy to shown that

CISE —E(&Tby

m\ w

(26)

Substituting (12), (17), (26), X, from (18) into (25) and

using the scheme for current calculation [2] we finally obtain

2

2
jy =(&j n_cl<(g_§y+ha)y cothm;]/+ha;°7 cothhwoyjél:rO

H

As is seen from the comparison of equations (27) and (3) the
coefficient at (— ST L;l) coincides with the expression for f.

Taking into account the expressions (43), (46) [2] we
may write the entropy S of the parabolic QW directed
perpendicular to the quantizing magnetic field. Introducing S
in the expression for A, we derive the well known result for
the By in the nondegenerate case [5]:

27
5 @7

X

2
, Cc
Bu=-—%| S 28)
o) H
It should be noted that as opposed to the previous
researches (see, for example, [6]) given method of the
effective Hamiltonian needs no account of the diamagnetism.
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Hashimzadeh F.M. for helpful discussion.
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TERMOMAQNIT COROYANLARI HESABLAMAQ UCUN YENI METOD.
KVANT MOFTILI

Kvant moftilinds geyri-dissipativ termomaqnit carayanlari hesablamagq iigiin effektiv Hamiltonian metodu (EHM) taklif edilib. EHM-da
movcud adabiyyatdan forqli olaraq temperatur Hamiltoniana daxil edilib. Hesablamalar koherent hallar tasvirinds, parabolik kvant moftili vo

cirlagmamus statistika ti¢lin aparilmigdir.
Alman termomagqnit tenzorunun qeyri-diaqonal torkib hissasi bagqa tisullarla hesablanmig ad1 ¢okilon tenzorun ifadosi ilo iist-iisto diigiir.
Forqli olaraq, EHM-dan istifade etdikds elektron diamaqnetizminin nozars alinmasina ehtiyac yaranmair.

P.I'. AraeBa

HOBBIA METO/] PACYUETA TEPMOMATHHUTHOI'O TOKA.
KBAHTOBASA TIPOBOJIOKA

Jnst pacueTa HEIUCCHIIATUBHOTO TEPMOMArHUTHOTO TOKA B KBAHTOBOHM IIPOBOJIOKE MPEATOKEH METOA 3((EKTUBHOTO raMHUIbTOHHAHA
(MOT'). B sToM MeToze B OTIIMUHE OT MPEAMIECTBYIOMUX PabOT yaaeTcss BBECTU TEMIIEpaTypy B TaMHIBTOHHMAH. PacueTsl Mpom3BeeHH! B
TIPEICTABICHUN KOTEPEHTHBIX COCTOSTHUH JUIs MapaboIMIecKoil KBaHTOBOW IPOBOJIOKH M HEBBIPOXKIACHHOHN CTATHCTHKY.

IlomyyeHHOE 3TUM METOAOM BBIpa)KCHUE A HEAUAarOHAIbHOM KOMIIOHEHTBHI TEPMOMArHUTHOIO TEH30pa COBHAJACT C U3BECTHBIM U3
nUTepaTypsl BblpaxkeHHeM. ClielyeT OTMETUTB, YTO IPU HCIoib3oBaHMM MDOI' He BO3HMKAaeT HEOOXOIMMOCTH B y4eTe AWaMarHeTH3Ma
JJIEKTPOHOB.
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