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One of the most important properties of a laser resonator is the highly collimated or spatially coherent nature of the laser output beam. 

Laser beam diameter and quality factor M² are significant parameters in a wide range of laser applications. This is because the spatial beam 
quality determines how closely the beam can be focused or how well the beam propagates over long distances without significant dispersion. 
In the present paper we have used three different methods to qualify the spatial structure of a laser beam propagating in free space, the results 
are obtained and discussed, and we have found that the Wigner distribution function is a powerful tool which allows a global characterization 
of any kind of beam. 

 
1. INTRODUCTION 

The use of lenses and other optical elements is required 
by mainly laser applications so as to focus, modify, or shape 
the laser beam [1]. The adequate choice of the best optics for 
a particular laser application necessitates the knowledge of 
the basic properties of Gaussian beams. In most cases, the 
propagation of laser-beam can be approximated by assuming 
that the laser beam has an ideal Gaussian intensity profile, 
corresponding to the theoretical 00TEM  mode.  

In praxis, the real lasers output is not truly Gaussian. This 
discrepancy can be accommodated by using a quality factor 

2M  (called the “M-square” factor). The quality factor  2M  
has been defined to describe the deviation of the laser beam 
from a theoretical Gaussian one. 

For a theoretical Gaussian beam 2 1M = ; but for a real 
laser beam 2 1M > . In all cases, the 2M factor, which varies 
significantly, affects the characteristics of a laser beam and 
cannot be neglected in optical designs [1-3]. 

Firstly, we will discuss the characteristics of a theoretical 
Gaussian beam 2 1M =  and then we will show how these 
characteristics change as the beam deviates from its 
theoretical shape. In all cases, a circularly symmetric wave 
front is assumed, as would be the case for a helium neon 
laser. Diode laser beams are asymmetric and often astigmatic, 
which causes their transformation to be more complex. In 
order to gain an appreciation of the principles and limitations 
of Gaussian beam optics, it is necessary to understand the 
nature of the laser output beam. In 00TEM  mode, the beam 
emitted from a laser is a perfect plane wave with a Gaussian 
transverse irradiance profile. The Gaussian shape is truncated 
at some diameter either by the internal dimensions of the 
laser or by some limiting aperture in the optical train. To 
specify and discuss propagation characteristics of a laser 
beam, we must give the theoretical aspect of laser beam 
propagation.  

The aim of this paper consists on the use of a three 
techniques to evaluate the spatial structure of a laser beam; 
the first technique is based on the measurement of the width 
of the beam in different locations along the axis of 
propagation and then we plot the width as a function of the 
distance of propagation, from the curve we extract the spatial 
characteristics of the beam.  

The second one is based on the measurement of the 
intensity moments in different locations along the axis of 
propagation, from these moments we extract the spatial 
characteristics of the beam, and we do that we have done 
with the fist method.  

The last technique is based on the measurement of the 
Wigner distribution function; this last gives access to the 
whole spatial characteristics of the laser beam. And finally 
we discuss the results and we will finish with a conclusion. 
 
2. THEORETICAL ASPECTS 
2.1 Gaussian beam 

Gaussian beams are the simplest and often the most 
desirable type of beam provided by a laser source. As we will 
see in this section, they are well characterized and the 
evolution is smooth and easily predicted. The amplitude 
function representing a Gaussian beam can be deduced from 
the boundary conditions of the optical resonator where the 
laser radiation is produced. The geometrical characteristics of 
the resonator determine the type of laser emission obtained. 
For stable resonators, neglecting a small loss of energy, the 
amplitude distribution is self-reproduced in every round trip 
of the laser through the resonator. Unstable resonators 
produce an amplitude distribution more complicated than in 
the stable case. Besides, the energy is leaking in large 
proportion for every round trip. For sake of simplicity we 
restrict this first analysis to those laser sources producing 
Gaussian beams. The curvature of the mirrors of the 
resonator and their axial distance determines the size and the 
location of the region showing the highest density of energy 
along the beam. The transversal characteristics of the 
resonator allow the existence of a set of amplitude 
distributions that are usually named as modes of the 
resonator. The Gaussian beam is the lowest degree mode, and 
therefore it is the most commonly obtained from stable 
optical resonators [2, 3]. 

The propagation of Gaussian beams through an optical 
system can be treated almost as simply as geometric optics. 
Because of the unique self-Fourier Transform characteristic 
of the Gaussian, we do not need an integral to describe the 
evolution of the intensity profile with distance. The 
transverse distribution intensity remains Gaussian at every 
point in the system; only the radius of the Gaussian and the 
radius of curvature of the wave front change [4].  

The set of modes is characterized in every point along the 
propagation axis by two functions: ( )R z  and ( )w z . The first 
describes the radius in the transverse plane for which the 
amplitude of the field has decreased by a factor 1 e  with 
respect to the amplitude value along the propagation axis, 
while the second parameter, with respect to the fundamental 
mode 00TEM , gives the radius of curvature of the wave front 
that intersects the propagation axis. The transversal intensity 
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distribution of the laser beam (for the 00TEM  only) has a 
Gaussian dependence, it is given by: 

 

( ) ( ) ( )
2

, exp
2

rU r z A z jk
q z

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
                 (1) 

 
And its radius ( )w z  contracts to a minimum 0w known as 

the waist of the beam. The two parameters ( )R z  and ( )w z  
are determined by the waist size 0w and by the distance z from 
the waist position, the complex ray of curvature between 
brackets is given as a function of the ray curvature of the 
wave front of the beam and of its width [1, 2, 3]:   

 

( ) ( ) ( )2
1 1 j

q z R z w z
λ

π
= −                  (2) 

 
The longitudinal beam profile determined by the 

function ( )w z  is a hyperbola with asymptotes forming an 
angle with the propagation axis.  

The equations describing the beam radius ( )w z  and the 

wave front radius of curvature ( )R z  are: 
 

( )
2

2 2
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R

zw z w
z
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( )
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1 RzR z z
z
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                     (4) 

 
The Rayleigh length and the divergence angle, respectively 

relate the beam waist to the wave length as follows: 
 

2
0

R
wz π
λ

=           ;          
0w

λθ
π

=        (5) 

 
  The beam size will increase, slowly at first, then faster, 
eventually increasing proportionally to z . The wave front 
radius of curvature, which was infinite at 0z = , will become 
finite and initially decrease with z . At some point it will 
reach a minimum value, and then increase with larger z , 
eventually becoming proportional to z . 
 
2.2 Real aspect of laser beams and the intensity moments 

In the most cases in practice the laser beam is not purely 
Gaussian because of the experimental limitations as; 
truncation, phase distortion, etc… (see fig.1)  

The theory of Gaussian beam propagation is not sufficient 
to describe the evolution of the spatial characteristics of such 
beams as beam width and the divergence, the introduction of 
the intensity moments is very convenient in this case and the 
beam width and the divergence are given by (for the shake of 
simplicity we consider a circular beam with only one 
dimension x) [5]:    

 

( ) 24 xzd =         ( ) 24 θθ =z        (6) 

 

 
Fig.1: Intensity distribution of non Gaussian laser. 

 
Here the second moments of the intensity distribution 

( ), ,I x y z at the location z are given by: 
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Here x  is the first moment of the intensity distribution 

giving coordinates of the beam centre: 
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 The invariant parameter and the quality factor 2M  

We can introduce a matrix which describes the different 
spatial parameters of a laser beam (parameters of 
propagation), this matrix is called in the literature a beam 
matrix M, and it is given with the physical signification of 
each element of the matrix by: 
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M=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
2

2

θθ
θ
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The propagation of a given laser beam along the optical 

systems described by ABCD matrix, is given by [3, 5]:  
 

2 2
2 2 2 1 1 1

2 2
2 2 2 1 1 1

Tx x x xA B A B
C D C Dx x

θ θ

θ θ θ θ

⎛ ⎞ ⎛ ⎞
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  (13) 

 
We can write [5]: 
 

2
11

2
1

2
1

2
22

2
2

2
2 θθθθ xxxx −=−             (14) 

 
Where, the sub notations 1 and 2 are for the input and out 

beam.                                       
Finally we can show that the quantity 2 2x xθ θ−  is 

invariant with propagation with lossless optical systems. This 
invariant is given by [3.5]: 

 
2

22 2 2

4
x x Mλθ θ

π
⎛ ⎞− = ⎜ ⎟
⎝ ⎠

            (15) 

 
In the previous paragraph we have found that for the 

Gaussian beams there is a parameter which remains invariant 
along the propagation through ABCD optical systems. If we 
rearrange the equation (15) we find the famous quality factor 
known as M² factor [3, 5-9], given by: 

 

θθ
λ
π xxM −= 222 4

       (16) 

 
This parameter gives a compact characterization of any 

kind of laser beams; it describes the deviation of the real laser 
beam from the ideal model which is the Gaussian one. The 
value of M² is 1 for the ideal case (Gaussian beam), and it 
become greater than 1 when the intensity distribution 
deviates from the Gaussian model.     
                                                        
2.3. Wigner distribution function 

A partially-coherent light beam is described better by its 
second order functions. One of these functions is the cross 
spectral density function that, in the two dimensional case, 
can be written as [6, 7, 10, 11,12]: 

 

( ) ( ) ( )zsxEzsxEzsx ,2,2,, * −+=Γ    (17) 

                                     
Where; ( )zxE , is the distribution of the electric field 

along the x axis at a given distance of propagation z, * means 
the complex conjugate and  stands for an ensemble 
average. 

The Wigner distribution is defined as the Fourier 
transform of the cross spectral density as follows [6, 7, 12]. 

 

( ) ( ) ( )dsusizsxzuxW π2exp,,,, −Γ= ∫           (18) 

 
The use of the Wigner distribution in optics has been 

deeply studied and it seems to be very well adapted to the 
analysis of partially coherent beam because it contains 
information about the spatial irradiance distribution and its 
angular spectrum at the same time, so it allows to give the 
local spatial frequencies at any location. 
We define both the width, divergence and the curvature as 
functions of the second order moments of the Wigner 
distribution as [6-7, 10-12]: 
 

( )
( ) ( )

( )∫∫
∫∫ −

=
dxduzuxW

dxduzuxWxx
zx

W ,,

,,2

2    (19) 

 

( )
( ) ( )

( )∫∫
∫∫ −

=
dxduzuxW

dxduzuxWuu
z

W ,,

,,2

2θ      (20) 

 

( )
( )

( )∫∫
∫∫=

dxduzuxW

dxduzuxWxu
zx

W ,,

,,
θ           (21) 

 
 
3. EXPERIMENTAL RESULTS 

The first step of the experiment is to take different 
caustics which correspond to the different propagating 
distances z by using the setup presented in the figure.2 

 

 
 

Fig.2. The record of the different caustics 
 

We have a lens which focuses the laser beam, and then we 
take different images (caustics) in different locations along z 
axis of propagation. The images taken by a CCD camera are 
presented bellow:  

 

 
 
 

Fig.3. Caustics spots of laser beam in different z positions in mm. 
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With the three methods we use the same caustics (images) 
to characterize the spatial structure of the laser beam. 
 
The first method: 

The evolution of the width of laser beam along free space 
is represented in figure 4. From this curve we extract the 
beam waist and the divergence, and then the M² factor. 

 

 
 

Fig.4. The evolution of laser beam width along free 
space. mmwd 4.02 00 == . The quality factor is found 

2M = 1.77 
 

The second method ”Moment method”: 
With the same manner as the first method, but in this one 

we measure the intensity second order moments at different 
distances of propagation z, we have plotted the curve by 
using ‘Beam analyzer’ software. The curve is given by the 
figure 5. 

 

 
 
Fig.5. The evolution of the second order moment of laser beam 

along free space. 
 

From the curve we extract the spatial characteristics as 
follows: the waist: mmxwd 43.042 2

00 === , and the 

divergence  rad62 1083.24 −×== θθ .  The quality 

factor is given by 
( )

2

4
BPPM
λ π

= = 1.77 

The third method “Wigner distribution”: 
For this method, we construct the Wigner distribution 

function from the different caustics, the reconstruction is 
based on the mathematical concept of Radon transform and 
filtered back projection theorem, in the present experiment 
we have reconstructed the Wigner distribution by using the 
’Beam analyzer’ software and the result is given bellow in 
the figure 6.  

 

 
 

Fig.6. Wigner distribution of reconstructed caustics. 
 

The software beam analyzer allows calculating the 
different moments (first, second and mixed orders) of the 
Wigner distribution function. It gives the results in a form of 
a (4*4) matrix. 

The beam matrix is given by: 
 

 S=
2 3 6

2 6 6

2.84 10 4.76 10

4.76 10 2.83 10

x xu

xu u

− −

− −

⎛ ⎞ ⎛ ⎞× − ×
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− × ×⎝ ⎠ ⎝ ⎠

 

 
From this matrix we extract the waist 

mmxwd 42.042 2
00 === , and the divergence 

rad61083.2 −×=θ . Finally we get   the value of the quality  

factor as 
( )

2

4
BPPM
λ π

= = 1,78. 

 
4. CONCLUSION 

In this work three methods are used to characterize the 
laser beam quality. The results obtained from experiments 
show that the use of the Wigner distribution gives more 
information about the characteristics of laser such as 
coherence. The use of the Wigner distribution is more 
important in partially light characterization.   
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