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The theory of current oscillation in impurity semiconductors in external electric and magnetic fields is given. The strength values of
electric and magnetic fields under different experimental conditions, at which instabilities leading to current oscillations in crystal are
observed, are obtained. The frequencies of current oscillations are obtained. The theory of oscillation appearance in two-valley
semiconductors of GaAs type in strong external electric and magnetic fields is constructed.

INTRODUCTION

The charge carriers: electrons and holes in internal
electric field at acceleration by electric field have the
additional energy the average value of which in a unit of time
on unit of volume is defined as JE [1], where | is current
density and E is electric field strength. In stationary state this
energy should be equal to energy in average lost in a unit of
time by charge carriers at collisions. Let’s designate & the
energy change in a unit of time of charge carriers because of
collisions. It is obvious that £ depends on & energy which
the charge carrier has. Averaging it on € values we obtain

(&)em . The condition of energy balance of stationary state
under consideration will have the following form:
(]_)E) =n()em (1)
where »n is concentration of charge carriers. In
thermodynamic equilibrium state the charge carriers give
energy in a unit of time upon the average to lattice as much
as they receive from one, i.e.
Eem =0 2
If in the case of external fields the condition (2) is
realized then such fields are considered as weak ones.
However, the situation essentially changes at presence of
external fields at which the energy obtained by charge

carriers from the field increases and the value (&)
calculated for states close to thermodynamic equilibrium

ones can be less than (fﬁ )

Then the average energy of charge carriers begins to
increase with respect to its equilibrium value. At small
equilibrium disturbance the right part of equation (1) can be

. . . ener
expand into series over difference between average gy

and its equilibrium value %kT by the following expression:

3—
E(S)—kT

(GE) =322, 3)

Te

Here 7,1 are the expansion coefficients, moreover T, is
called the average time of energy relaxation, has the time
dimension, depends on temperature and scattering
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mechanism of charge carriers. The average energy of charge
carriers in electric field can exceed its thermodynamic
equilibrium value because of comparative slowness of energy
exchange process between charge carriers and their
surroundings in lattice. If only electrons are charge carriers
then this effect will lead to the electron gas heating.

For effect description let’s introduce the conception of

electron temperature 7, which differs from lattice
temperature 7.
Let’s define 7, by the following expression:
— 3
() =2k, )

Note that average energy (¢) should contain the summand
connected with kinetic energy of charge carrier system as a
whole.

Taking into account the drift of charge carriers the
equation (4) is rewritten in the following form:

(&) = ZkT, + & ()

Taking into consideration (4) we obtain from (3) the

following expression:

© ="=D ©)

From (6) it follows that “temperature” 7, depends on
electric field strength and the scattering mechanism.

The “heating” of charge carriers leads to the series of
consequences observed on the experiment being technical
interest. Note that Ohm’s law is broken under conditions of
charge carrier “heating”, the mobility and electric conduction
depend on field strength, and charge-drift velocity becomes
the non-linear function of field strength.

In general, the flow density is the tensor value and
depends on external field direction. Therefore it follows that J

and E vectors can be not parallel to each other. The angle
between them depends on J vector orientation with respect of
crystal crystallographic axes. This effect is called Sasaki
effect [2].

The presence of external fields leads to the change of
conduction charge carrier number and their mobility. The
dependence of charge carrier concentration on field strength
is connected with specifics of recombination process. Under
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the condition of thermodynamic equilibrium the free electron
concentration is only defined by position of Fermi level and
temperature. The last one is the result of that the probability
of charge carrier capture by recombination centers and
probability of reversal emission connect with each other by
principle of detail equilibrium.

At system deviation from thermodynamic equilibrium the
free charge carrier concentration will depend not only on
lattice temperature but on relation between probabilities of
processes of capture and reversal emission of charge carriers.
The electric conduction decrease will connect with change of
charge carrier number and mobility.

GUNN EFFECT

For simpleness let’s consider the spatially homogeneous
crystal [2-8]. In this case the current density is described by
the expression:

j=0E; o =enu=o0(T,) 7

and equation j = j(E) defines the volt-ampere characteristic
of considered sample the graphic picture of which is usually
given in coordinates (7,E). At condition at which Ohm’s law
is applied, the plot of function j(E) is the direct line passing
through origin of coordinates with angular coefficient o
which is equal to conduction value in weak field

As a result of heating of electron gas the volt-ampere
characteristic becomes the non-linear one and for its
description it is comfortable to introduce the concept of
differential conductionagy,.

When o is scalar the o, value is defined by equation:

daj d
g)(E)= —=0+E— ®)

Using the equilibrium equation:

Te—T

Te

oFE?=n

(€))

and introducing the variable R = (TET_T) we obtain 0E? =

e
nR. The nR value is energy given by current carriers in the

lattice in unit of volume. As u is mobility, n is concentration
and 7, is time depend on temperature 7, then:

_ do dTe
oy =0+ ar. dE (10)
Differentiating over E the expression (9)
dr, 20E
@ = TR an
dTe dTe

substituting (11) into (10) and changing £ on % we obtain:

d(nR) nR do

_ dTe g dTe

O0d = 0 3mR) nRdo
dTe o dTe

(12)

In dependence on the fact that the formula (12) increases
or decreases on field strength, the plot of volt-ampere
characteristic j(E) will be inclined up or down from direct

line j=oyE. The corresponding volt-ampere characteristics of
both types have the following form:

i F
E
N — type characteristics
i4
E

S — type characteristics

In case of N-type characteristic the differential conduction
changes the sign passing zero (the numerator in (12) changes
the sign). In case of S-type characteristic the differential
conduction changes the sign passing the singular point in
which the denominator in (12) takes zero value.

The formation conditions of characteristics of both types
are easily found from formula (12):

for N — type characteristics

W g oy (n)
()0 o
for S — type characteristics
_ E d(ten) _
- () m =0 (14

From formula (13) it follows that with increase of
electron temperature the product of mobility on concentration
of charge carriers should rapidly decrease, moreover 7,
should enough exceed the T lattice temperature. In second
case (condition (14)), the energy given by electrons in unit of
time should rapidly decrease with increase of electron
temperature, moreover the overheating (T, — T) shouldn’t be
very small one.

One can consider the following facts:

e In homogeneous n-Gads the appearance of N-type
characteristic is expected at room temperature. The
negative differential conductivity should appear at field
strength E~2300V/cm and disappear at Ex10000V/cm.

e In n-Ge doped by aurum or cuprum at lattice
temperature  30-35K  also should appear the
characteristic of N-type.

It is obvious that conception on spatial inhomogeneity in
average doesn’t exclude the local deviations of physical
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values from their average ones. The fluctuations of charge
carrier concentrations and electric field strength are caused
by random heat motion of charge carriers by other hand and
by spontaneous homogeneities in distribution of impurity
atoms and other structural defects of crystal lattice. In the
case when charge carriers are in the state of thermodynamic
balance or close to it the presence of these fluctuations
weakly influences on transfer phenomenon. However, the
situation can change if charge carriers are strongly “heated”.
Then at fluctuation of electric field AE the fluctuation of
charge carrier density should appear and according to Poisson
equation it equals to following expression:

— £ g
Ap = D div AE (15)
and the current fluctuation has the following form:
Aj = o AE (16)

From this it follows that for o; > 0 and 0; < 0 cases the
charge inflow into fluctuation region changes and
fluctuations can either damp or increase, correspondingly.

Thus, in homogeneous crystal the regions of strong and
weak fields can appear, moreover, the distribution of electric
fields and charge carriers will be fluctuationally instable,
correspondingly. These regions so-called domains can form
in any point of homogeneous crystal under influence of heat
fluctuations and transfer along crystal until they disappear in
one of contact electrodes. The domain path velocity
essentially depends on mechanism responsible for their
appearance in detail for appearance of negative differential
conduction and it is possible the observance of such types of
non-linear processes as drift and recombination ones.

Note that multi-valley semiconductors in the mechanism
of drift nonlinearity the field dependence of mobility plays
the main role. In this case the domain path velocity is drift
one of majority carriers in weak field. In the mechanism of
recombination nonlinearity the processes of capture and
generation of charge carriers play the main role. In the
dependence on field strength values the relation of
concentrations of free and bound charge carrier changes. The
domain movement is caused by redistribution of charge
carriers between band and capture levels. This process limits
the domain path velocity which as a result can be essentially
less than drift one.

So in n-Ge doped by aurum the domain path velocity at
T=20K varies in interval /0~ - 10~ cm/sec.

During domain movement along technologically
homogeneous sample, the current doesn’t change. Achieving
to electrode the domain destroys that leads to current increase
in the electric circuit. The appearance of new domain on
another electrode leads to new current decrease in the electric
circuit. This cyclic process of origin, motion and destroy of
domains leads to periodic current oscillations in electric
circuit load. The current oscillation frequency o is easily
evaluated. If v; is domain path velocity, L is sample length in
current direction, then domain time of flight through sample

isequaltot = Ui . From this it follows that
d

an

v
w=2m-42
L
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In n-Gads the oscillation frequency varies in interval
510°+5-10° Hz.

The oscillation appearance in n-Gads and in similar
materials was firstly observed by Gunn and nowadays is
widely used in micro-semiconductor electronics at
development of microwave generators.

CURRENT OSCILLATIONS IN IMPURITY
SEMICONDUCTORS.

In impurity semiconductors the number of electrons and
holes changes because of capture and generation of charge
carriers by impurity centers [9-14]. It is possible to
experimentally reveal the current oscillations in
semiconductors with deep centers (traps) studying the
impedance change appearing at introducing of the given
semiconductor in electric circuit. Under the given conditions
in some frequency region the active resistance introducing by
semiconductor into electric circuit and consequently the
value of impedance real part can be negative one. The last
one means that current oscillations should appear and
consequently the instability on impedance can be observed.

There are two types of instabilities. If the oscillations of
charge carriers take place only inside the semiconductor, but
aren’t observed in external electric circuit then such type of
instability is called internal instability. If the oscillations of
charge carriers are observed in external circuit then such type
of instability is called external instability.

In the present paper the external instability has analyzed
for semiconductors with certain impurities.

Let’s consider the impurity semiconductor with deep
negatively charged traps and charge carriers of both signs, i.e.
the electrons and holes with #n_ and n, concentrations. Let’s
suppose that concentration of deep traps is Ny, N of them is
concentration of once negatively charged traps and N. is
concentration of doubly negatively charged traps. Then:

Ny=N+N.
Note that such model is to germanium doped by aurum

impurities. The continuity equation for electrons and holes
has the following form [15]:

on_ .. _ (9n-

S tdivj = (% )m
(18)

6n+ . . _ 6n+

¢ Tdwjy = (W)M

on_
(%) =v-©@n N.—y-(EmN
rec.

(19)

an
(55). == ve B Ny =y, (On,N

Here y.(E) and y.(E) are coefficients of trapping and ejection
of electrons by once negatively charged traps at presence of
electric field, correspondingly.

At E=0; y(E)= y.(0) u y+(E)= y:(0)
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ny N2

Ny

_n8Ny |
n_ = T,

Ny = (20)

The equation describing the concentration variation of
charged traps on time in current carrier recombination and
generation processes has the form:

(5),.. ~ (55)
ot Jrec. ot Jrec.

The quasineutrality condition at presence of
recombination and generation of charge carriers means that
total current doesn’t depend on coordinates but depends on
time. Thus

ON_ _

Pyl 21

divJ=e-div(j,—j_.) =0;

j+ = nyu (E)E — Dy Vny; (22)

jo=-n_u_(E)E—D_Vn_;

It is easily proved that taking into account of dependence
of electron and hole mobilities on electric field doesn’t lead
to essential corrections to mobility values. For example,
linearized mobility of electrons and holes will have the form:

__,.0 d(Inpug) d(inuz)
Uz = Uz (1 + a(nE2) 5 a(inE2) 1. In the case of
dispersion lattice acoustic oscillations have
1
1 d(inug) _ 1 . . .

Uz~E 2 u m =- and in the case of dispersion on

. . q - . d(lnux
lattice optic oscillations we obtain: ( ”JZ') =

d(inE2)

Let’s suppose that concentration of electrons and holes is
big enough, so diffusion coefficient satisfy to Einstein

. koT .
relation Dy = %ui. Supposing

ny =nd +Any; N_=N°+AN_;E = Ey + AE (23)

we linearize the equation (19-22) on small inclinations. The
oscillating current AJ is proportional to ~e~*t and each of
rest variables ny, N_n E are the sum of two members the
one of which is proportional to~e~'?, and other one is
proportional to ~e!**~®D " \here x is wave vector, @ is
oscillation frequency . For example

Anﬂre_i“’t + Angei(kx—wt)

Angy

(24)

Let’s confine ourselves by the solving plan because of
calculation inconvenience. Excluding AN’, AN!, AE',AE"
we obtain the equation systems for obtaining of Anl, AnY
and wave vector «:

{

U_(0)An" +U, (0)An!/+Uurg=0
C_(0)An"" +c,(0)AnY +cAJ=0

U_(k)An" +U, (k)An! =0

C_(k)An" +c,(k)An!/ =0
(25)

{
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Coefficients U4 (k, 0) and C (k, 0) depend on character
frequency and constant electric field.

To find k wave vector we solve the dispersion equation
obtained from determinant of Uz and Cx coefficients, i.e.

0

U_C+_U+C_ - (26)

Let’s consider solutions of (26) in two limit cases:

1)  high-frequency limit: w > vz, vf ;
2) low-frequency limit: w <K vz, vf
v_ =vy_(Ey)N, is frequency of electron capture by

once charged traps;

vE =y, (Ey)N, is frequency of ejection of holes

doubly charged traps;

is frequency of hole capture by
doubly charged traps.

vy =¥+ (0)N2

To obtain k wave vector values we take into consideration
the following condition: koT < lE, at kgT~10"1* erg,
L~1cm, Ey > 6+ 1072 V/em (1 is sample length).

Neglecting small values we obtain:

Any (x,t) = Dife'k1* 4 DFetk2* + DEAJ  (27)

Dli:Z contacts are found from boundary conditions. The
contacts are always in some degree “straightening” ones.
Thus, so-called ohmic contacts present themselves limit
cases. One can difference two types of boundary conditions
in dependence on filter directions of both contacts:

e the particles of similar signs inject on both contacts
An,(0) = 8%9AJ, An, (L) = 8kAg
or
An_(0) = 6°AJ, An_(L) = 6LAJ

e the particles of opposite signs inject on both contacts

An,(0) = 8%9AJ, An_(L) = 8:AJ
or
An_(0) = 8°AJ, An, (L) = 8LAJ
o,L .
Here 6i are 1njection rates.

Thus, defining constants sz one can calculate the
crystal impedance using the following expression:
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AE(x,t) :%[AJ— ev_An_(x,t)—eviAn(x,t)+

LV ()~ T (x,0)] 29

1

L
Z_AJ_S fO AE(x,t)dx

Here L is crystal length, S is crystal cross-sectional area,
vy = ugEy are drift velocities of electrons and holes,
correspondingly, T is temperature in erg.

The impedance will depend on
52’L passndHbIM o6pasomin dependence on straightening
on contacts.

The expression (28) for impedance in general case is very

complex and unwieldy. Thus, let’s analyze it for following
cases:

injection rates

(1. n® >»nl, is given 59
2. n2>»n?, isgiven§° 29)
3 n® «nl, isgiven st
4. n® «nl, isgiven 5k
Note that the following equation is taken into

consideration before analyzing (28) with help of (29) at
linearization of corresponding equation:

g7 = 4ln o)

+ a(in(E3)) > 1

(30)

Taking into consideration (30) and evi&_?'L K 1, let’s
write for all cases (29) for real and imaginary impedance
parts the following expression:

A. High-frequency limit: w » v, vE

Case 1: n2 » nl, is given 63

(Re@) Yt 1 0,0 0,,0
=——,Zp=——=, 00 =e(nu-+n
Zg Lo’ 0 00S 0 (n2u THT)
Im(2) Uy w
=0,ev,6) = — KLY =-—> 1
< Zo o - A 2v_
Bl =+ LS
12 nd vy
The oscillation frequency is found from (_ RQZ(Z) n
0

R) = 0 equation, where R is electrical resistance. From this

it follows:
=% Y+
w="2. (D)
Electric field at frequency (31) changes in region
v, » = (32)
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Case 2: 1% » nl, is given 6°;

R

z, ev_69’

Lv_R

=2v_ > (—
@ v Zop-py €62

)"

Case 3:n® « nl, is given &L;

In this case the impedance can be negative by only
oscillation method.

Case 4:n% « nl, is given 6%;

B. Low-frequency limit: w < vz, v

1 case:n® » n?, is given 6?2

In this case Jm(z) > 0 u Re(z) can be negative as the

. . Lw
function of sina \and cosa, & = —

+
2 case: n% > nY, 3amano 82

The current oscillations can appear in external electric
circuit by oscillation form.

3 case: n°

4 case: n?

«nl, is given 8L;
«nl, is given 8%

In cases 3 and 4 the oscillations don’t appear at all.

The analysis of above mentioned results shows that
current oscillations in considered impurity semiconductors
mainly take place because of change of electron
concentration. The electron capture by impurity centers leads
to bigger current oscillation than hole capture. Note that in
this process the contacts are inject ones, but not ohmic ones.

For impedance analysis at presence of external magnetic
field it is necessary to take into consideration the dependence
of current density on magnetic field.

_)i: i ni‘lli(E, H)E + niﬂli(E, H)[E, H] i

~D,+(Vnyh)

Here h is unit vector on magnetic field; us+(E, H),
u1+(E,H), pp4+(E,H) are ohmic, Hall and focusing
mobilities of holes and electrons, correspondingly; Dy, Dy 4,
D, are ohmic, Hall and focusing coefficients of diffusion
cha_rge carriers, correspondingly.

For impedance calculation at the presence of external

magnetic field let’s consider the case when charge carrier has
the effective temperature:

CcEy

Tefr. Ur Tepr. = g(ﬁ)z

e

D.|__=

(34)

where S is sound speed, c is light speed, T is temperature in
erg. Note that the given task is related to three-dimensional
ones at the presence of magnetic field and consequently, the
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crystal sizes play the essential role. Let’s consider the crystal
the sizes of which satisfy to following conditions L, <
Ly, Ly < Ly. Let’s external electric field is directed along x
axis, but magnetic one is directed to Z axis. Let’s calculate
the impedance for high-frequency w > vz, vf and low-
frequency w < vz, VE cases.

The frequency of current oscillations at the presence of
magnetic field besides the physical values very strongly
depends on injection rates. At small values of magnetic field
(u+H < ¢) the variation interval of electric field in which
the instabilities on impedance appear, practically doesn’t
change. Let’s consider the classically strong magnetic field

(usH > ¢, H> Hyyp = #i) and after complex algebraic
- +

calculations for real and imaginary impedance parts we
obtain the following expressions:

1) w » vy, vE
Rez_( H )2< Hy Hp  H? 9>_
Zo Hehar. H H HepgrHz ™)'
u_HOKLc
Imz
Zo ( )(”+Hz v H1)
zva (n+v+[3y+n v_ By) 35
nokyuo
Here

H, = aHgq,. (1 +

= aHcpar. (

_ 2v_n_Bl/ . _ Ny Hy
T now6 pgY n_

2Tk, (v_\2] /*
[u 3eEo ] ’

H; = aHcpgr. (1 + bZ)' 1= Hepar 4

n, Bl
H —Hchara + -)'-/'
- B
— = 0 — S0 0 L L
Hy _H”“""Z'eu_&; 6 =06%+67+ 6L+ 6y

At Re z current oscillations passing through zero becomes
negative value and moreover, Im z can take any sign. From
(35) it follows that there are different variation intervals of
magnetic field in which Re z and Im z can change the signs.
For simpleness we confine ourselves by following case:

Rez=0wuImz=0.
Bl _

v_
=+ =—.
B

From (35) one can easily find that at -
N

- Imz =0 and at H,=H,, i.e. when hole radiation
+
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frequency vE  will be equal to hole capture frequency
vE = v, at following values of external magnetic field,

H= Hchar (ev 5) /2 (36)

the impedance real part Re z=0, the current oscillations
appear and take place.

2) w<Lvg VE
1— )/1 HH
v+H H3
-0 ﬂ+ v n
Imz= 0, ﬂ_l/ U_f . TL_+
Re z =0 at H= (Hchar.H3)1/2 when the condition is
carried out:
v+ < 1 no 1
2n+ .8+

Thus at the presence of external magnetic field the
capture and radiation of holes play the essential role.

CURRENT OSCILLATIONS IN TWO-VALLEY
SEMICONDUCTORS.

The current oscillations in external magnetic field in two-
valley semiconductors of GaAs type had been firstly studied
by Gunn. Beginning from given value of electric field, the
current oscillations with microwave frequency w~10’~10"'Hz
appear. This effect is studied in many theoretical works only

. . . . d
near threshold, i.e. when differential conductivity o; = 5

0 (N -type characteristics).

When conductivity becomes negative one, i.e. 65 < 0 the
distribution of electric field E in crystal becomes
inhomogeneous one, the strongly expressed electric field
regions, i.e. domains form. Moreover, the amplitude of
current oscillations from some moment begins to depend on
time, the task becomes nonlinear one and its theoretical
solving becomes the complex one. In this part the some
results of theoretical investigations of nonlinear Gunn effect
in region o, < 0 at presence of constant electric field will be
discussed [16-18].

Let’s total concentration of charge carriers is as follows
N= n + n , the mobilities of charge carriers x4 and u’,
diffusion coefficients D and D’ satisfy the following
conditions:

D»D'; u»u'; n»>n';n=fN=f(E)N(E)

(37)
-1

E m
f(E)—(m—l)[m—1+(a) ]
Parameter m is calculated from experimental data as the
relation of ohmic current to actual one in point E,=E,
(o4 # 0).
The rate of o dynamic conductivity to conductivity in
weak field oy has the form:
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Sozi: : %:(fo‘Fxtoo)

[o2} 09Eq dxg

(38)

. E . . TP
Since xg = E—O then in the point of zero inclination we
a

have x, =1; fo —ﬁ and static current in it is as
follows:
__ m-1 ) _ 1
Jp = ooE,; m= % (39)
UoEa

The dynamics of current passage through sample is
described by following equations:

d(fN) 8J_ AN

ax 'ox Cat

J=efNuE+De
(40)

<71+5 —0 Ug=—MUEy

Supposing J=Jo+Ji; E=Ey+E;; N=Ny+N,;
and all inclinations from equilibrium values have the
following form: (Ey, J;, N;)~e'®t. From equation (40) for all

values (Ey, J1, N1) S (Ey, J10, Nip) and y = x—; we obtain:

%y 2. _ 9ofo dy a%y
+ wpy = wocl)(y ) 41)

"dt’ dt?

gofo

(kug + Dk?). Let’s introduce the
aof
8(1)0
that equation (41) is to equations of Van-der-Pole type

Here a)(z) =

designations: r = and T = wyt. From this it follows

dy dy)

dr’ dr2 (42)

0t2 Y+ w3y =rF (y,
For crystal GaAs r is small parameter (r<<[/), D =
2
1307, up = 1077, 0, = 2 ~ 1012571,
The solution (42) at =0 has the form y = a(0)cos(z +

0) = a cos. To solve the differential equation (42) at value
r#0 let’s use Bogolubov-Mitropolsky’s method:

% =rA(a) + TZAz(a)+}
W = wo + 7By (@) + T2By(
= = @o +1By(a) +7°By(a) + -

(43)
A (a) = ——n oan (y, & ZTZ) sinydy;

Bi(a) = e an(

2ma Y0

v, Zy d y)COSl,DdlI)

Let’s confine ourselves by second approximation and
after easy calculations we obtain:

a; = aoexp( [M} a)t) (44)
0
a; = ( kacrofzf)l mwo DKE 5 (45)
[exp 2ug v I4-8]('[1.0 Up 0]

From (44) it follows that when external field satisfies to

. 2
condition E, > E, (3;\:’6

first approximation and in second approximation a, —

(48ku0 L o
mwqy DkE
For current density propagating in crystal in external

2 . . .
) then the amplitude increases in

1/
2 o
) tends to constant (limiting) value.

electric E_(; and magnetic F(; fields let’s write the following
equation:
7 = enuE + en,u’[ﬁﬁ] + eDVn + eD’[Vﬁﬁ] (46)
One can chose the following geometry for electric and
magnetic fields: Hy = Ho,h, Eq = Eq,l where b and 7 are
unit vectors along z and x axes. Van-der-Pole equation at
presence of magnetic field has the following form:

9%R n'
e+ wiR =10 (RS ),R_n—0
« 1 [aofo(ku0+k,%D+)]1/2'
T W
_ ORTfom(1—f))ooD'ky(1+R) oy
d=w m [ oton +mR(fy—1) —m 1]

m(1-fy)+R+2
kugwg

+(5)

From (47) we find the amplitude:

_rwoyt
A=Aje 2
(48)
VZ _Ho kxD . \[2kxD' <Lx )
=2r+— _— 4+ —=—=-1
V= fo Hchar. fouo f()2u0 Ly

The crystal is in instable state at appearance of current

oscillations and at definite magnetic field strength ﬁo) the
wave the frequency of which can be defined in nonlinear
approximation from the solution of following equation

02
2w

at? 1at wiR =0

(49)
where w; and @, are character frequencies

From equation solution it follows that the external
magnetic field strength varies in interval

V2m

Hy = chhar;

UoL,

where

H, =H, .
z char. [27TL <00 (m - 1)]

The wave frequencies

1
Hchar. Gokxuo (m - 1) /2
H, m

Wqo =

decrease with magnetic field increase.
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