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Êâàäðóïîë ùàëëàðû SU(5) úÿáðè âàñèòÿñèëÿ Ñêèðìà ïîòåíñèàëûíäà òÿäãèã åäèëèð.  Êîëëåêòèâ ùàìèëòîíèàí êå÷èä íöâÿëÿðèíÿ  150,152Nd, 
150,152Sm âÿ 152Gd  òÿòáèã åäèëèð. Ãàðøûëûãëû òÿñèð ñàáèòëÿðè ÿñàñ âÿ ùÿéÿúàíëàíìûø 0+ ùàëëàðûíà E2 êå÷èäëÿðèíèí åùòèìàëû, èêè çÿððÿúèêëè 
êå÷èäëÿðèí ñïåêòðîñêîïèê ôàêòîðëàðûíûí ìöãàéèñÿñèíÿ ýþðÿ òÿéèí åäèëìèøäèð. 

  
The quadrupole states are described by a SU(5) algebra with Skyrme potential. The collective Hamiltonian is applied to the 

transitional nuclei 150,152Nd, 150,152Sm and 152Gd, where the constants are determined by fitting the experimental spectra, the relative 
E2 transition probabilities and the spectroscopic factors for the two-particle transitions to the ground and excited 0+ states. 

 
С помощью SU(5) алгебры описывается квадрупольные состояние в потенциале Скирма. Коллективный гамильтониан 

применяется к переходным ядрам: 150,152Nd, 150,152Sm и 152Gd. Константы взаимодействия подбираются для основных и 
возбужденных 0+ уровней по соответствующим  экспериментальным данным:  по E2 вероятностям, по спектроскопическим 
факторам  двухнуклонных передач. 
         
INTRODUCTION 

For a long while, the systematic behavior of the first 
excited 0+ states in some even-even transitional nuclei has 
attracted much attention, because those states often show 
too large anharmonicity to be considered as a member of 
the two-phonon triplet states in the phonon model. 
Generally speaking, the theory has been comparatively 
successful for deformed nuclei, but less for the spherical, 
or vibration nuclei. An important feature of the collective 
motion in nuclei is that, unlike other many-body systems, 
the excitation energies associated with vibrations and 
rotations are not very different from each other. 
   The purpose of this note is to point out that the group 
SU(6) might provide the appropriate framework for a 
unified description of the collective nuclear states. 
A.Arima and F.Iachello [1] showed that within this model 
both the vibrational and the rotational limit can be 
recovered.  

The first case we have discussed here is only 
vibrational spectra in the framework of the subgroup 
SU(5). Exploiting the related symmetry group SU(5) we 
have been able to obtain simple analytic expressions for 
the eigenvalues of the boson Hamiltonian and for the 
intereband transition matrix elements as well as for side 
feeding from one band to the other. Back bending occurs 
naturally as the crossing of two bands and it can be 

predicted from the relative spacing of the low excited 
states. 

The algebraic properties of the collective variable lead 
to a new quantum number N that implies in the boson 
representation the maximum number of phonons 
contained in the vibrational states. Because the boson-
boson interaction in SU(5) invariant Hamiltonian splits 
the degeneracy of the multiplets, this limit describes an 
anharmonic vibrator. It should be noted, we describe 
finite dimensional systems in contrast with the 
geometrical description in which      N → ∞.  It is worth 
noting that the knowledge of the invariance properties of 
the Hamiltonian provides directly a solution to the 
eigenvalue problem.   

The transformation into the intrinsic frame of 
reference has been performed explicitly. Thus, the 
formulae for the potential energy the quadrupole 
moments are obtained as well as the spectroscopic factors 
for 0+ state excitation in the two-nucleon transfer 
reactions. The proposed collective Hamiltonian is applied 
to the transitional nuclei Nd, Sm and Gd.  
 
1. DERIVATION OF THE COLLECTIVE 

HAMILTONIAN 
 The symmetry structure of the nuclear many body 

system is in general very complex. However, since only 
few degrees of freedom play a dominant role in the 
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description of the collective states, it is hoped that the 
Hamiltonian of the system when written in terms of these 
degrees of freedom has simple symmetry properties. We 
have suggested [1] that these symmetry properties are 
those of the six dimensional special unitary group SU(6) 
acting on a boson space. 

To begin with, we claim that a number of positive-
parity states can be generated in even-even nuclei as 
states of a system of N bosons having no intrinsic spin but 
able to occupy two levels, a ground-state level with 
angular momentum L = 0, and an excited state with 
angular momentum L =2. In the case in which the two 
levels are degenerate and there is no interaction between 
bosons, the five components of the excited L = 2 state, 
called d for convenience, and the single component of the 
ground L = 0 state, called s,  span a six – dimensional 
vector space which provides the basis for the 
representations of the unitary group SU(6). 

According to the group reduction [2]: 
SU(6)⊃SU(5)⊗U(1),                       (1.1) 

the first case we will consider is that of the group SU(5) 
spanned by the 5 components of the  d state alone. Only 
five labels are needed to classify the states. Three of them 
are the total boson number N, the total angular momentum 
L and its z – component M. The fourth is the seniority v. 
Instead of v one can introduce another quantum number 

βn , which counts boson pairs coupled to zero angular 

momentum. βn is related to v by                                                                          

                                     v = N  - 2 βn .              (1.2)                                                  
The representations of SU(5)contained in [N] are all 
symmetric representations  
            [ ] [ ] [ ],2,1,0 === βββ nnn up to [ ]Nn =β . 
       Finally one can introduce a fifth quantum number 

∆n , which counts boson triplets coupled to zero angular 

momentum. The total number N is partitioned by βn  and 

∆n as 

N=2 βn +3 ∆n +λ ,                          (1.3)                         
and the possible values of the total angular momentum  L  
are given in terms of λ   by  
                  L = λ ,λ +1,λ +2,…,2λ  -2,2λ .              (1.4) 
The energy levels can be found by diagonalizing the 
model Hamiltonian 

m
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where )(dd +  is the creation (annihilation) operator for a 
d – bosons and 

                             µλµλλ
22 || dVdq = .           (1.7) 

For our considerations the algebraic properties of the 
binary operators dddddd +++ ,, are important. 
Obviously, in a given configuration space these operators 
from Lie algebra. In what follows our basic assumption is, 
that this Lie algebra there exists a subalgebra, which 
contains all operators for a construction of the collective 
variables as well as collective Hamiltonian and the 
collective states. In general, such algebra does not exist. 
However, for our aim it is satisfactory, if this subalgebra 
exists with respect to the subspace of the collective 
vibrational states only, in which we are interested. 

It is important to notice that our collective 
Hamiltonian yields a finite energy matrix for a given 
value of N and a definite spin. This is a consequence of 
the symmetry properties of our collective operators. 
Hence one can really find exact solutions for the 
Hamiltonian (1.5).  

Because the boson-boson interaction in (1.5) splits 
the degeneracy of the multiplets, this limit describes an 
anharmonic vibrator. It should be noted that here and in 
(1.6) Nn ≤≤ β0 , and thus we describes finite 
dimensional systems in contrast with the geometrical 
description in which ∞→N . It is worth nothing that 
the knowledge of the invariance properties of the 
Hamiltonian provides directly a solution to the eigenvalue 
problem. 

 
2. E2 – MATRIX ELEMENTS 

Now the application of the collective Hamiltonian 
(1.5) to the transitional nuclei 150,152Nd, 150,152Sm and  
152Gd  is presented. In general the qualitative structure of 
the energy spectrum obtained from our Hamiltonian is not 
significantly influenced by the other order terms. Hence 
the energy spectrum and the wave functions are 
determined by the constants 420 ,, qqq  and the 
maximal phonon number N. The numbers of valence 
nucleons in 150,152Nd, 150, 152Sm and 152Gd are equal to 
18,20,18, 20, 20 respectively. Hence for those nuclei, N 
must be less than 9, 10, 9, 10, 10, respectively. Besides, 
one has to take into account the fact that N must increase, 
or one approach the region of stable deformation, i.e. N 
must be larger in 152Sm than in 150Sm. For both cases 
150Sm and 152Gd we took N =7, because their properties 
are similar. In 152Sm we put N =9. 

For the calculation of the E2 transitions the 
following expression of the electric quadrupole operator 
is used: 
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This operator has a part )( dssd ++ +  satisfying the 

selection rule β∆n = 1± , and a part ( dd + ) satisfying 

β∆n = 0. In the SU(5) vibrational limit the first term 
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gives rise to transitions form one βn  multiplet to another, 
while the second term gives rise to transitions within the 
same multiplet and to quadrupole moments. Of particular 
importance are those between members of the ground 
state band, for which one obtains 
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From the structure of (2.2) it also follows that in the 
SU(5) limit there are no  β∆n = 2 transitions and yet the 
quadrupole moment of the first excited 2+ state can be 
different from zero because of the β∆n = 0 term. Thus the 
observed large quadrupole moments may be compatible 
with the observed retardation of the β∆n = 2 transitions. 
The theoretical and experimental ratios of the B (E2) 
values for 150, 152Nd, 150,152Sm and 152Gd are shown in table  
1. The agreement between this theory and experimental 
results is good. The experimental data are taken from [3].   
 
3.  SPECTROSCOPIC FACTORS FOR TWO-

NUCLEON TRANSFER REACTIONS 
We have studied the spectroscopic factors for the two-

particle transitions to the ground and excited 0+ states in 
the model with pairing and quadrupole forces [4]. The 
transitions operators was taken to be of the form, for e.g. 
( tp, ) reaction 

                  ν
ν

ν bbtp ∑=Γ ~),( ,                      (3.1)                                          

where νb  is the annihilation operator of the nucleon in 

the state ν . Then the spectroscopic for the transition to 
the ground state is  

                        2
0 )/( GS ∆=                              (3.2)                                        

where G is the strength parameter of the pairing force, 
∆ - energy gap. 
   The corresponding formula is too cumbersome to be 
given here. Therefore we present only the approximate 
expressions for two cases 
1) ∆≈ω 2 (pairing vibration)                                                       

                           22
0 )5(/ −≈ NvSS .                        (3.3) 

2) ∆<ω< 20 (pairing + quadrupole force) 
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One can see from eq. (3.4) the strong dependence of 
the ratio 0/ SS  on the distribution of the single-particle 
moments. Therefore the low energy 0+ states are expected 
to be populated strongly in nuclei having large single-
particle quadrupole moments of the same sign in the 
vicinity of the chemical potential [4].  

The theoretical and experimental ratios of the 

0/ SS values for 150, 152Nd, 150,152Sm and 152Gd are shown 
in table 1. The experimental data are taken from [5]. 

 
4. SUMMARY AND CONCLUSIONS 

It is proposed to describe the collective vibrational 
degree of freedom by an algebra, which is formed by five 
components. This algebra proves to be the algebra of the 
group SU(5). This description stresses the symmetry 
rather than the geometry of the intrinsic system. The 
symmetry properties of the model Hamiltonian have 
played an important role in the development of other 
branches of physics and it is hoped that they may as well 
elucidate the description of the collective nuclear states. 
 
Table1. Theoretical and experimental ratios of the B(E2) 
and S/S0 values for nuclei 150,152Nd, 150, 152Sm and  152Gd 

 
I)* with pairing force;  II)* with pairing + quadrupole 
forces . 
 

In the resultant collective Hamiltonian the information 
about single particle energies and matrix elements of the 
interaction involves few constants. Hence the general 
properties of the collective Hamiltonian can be easily 
discussed in terms of these constants. The algebraic 
properties of collective variable lead to a quantum 
member N, which implies in the boson representation the 
maximum number of phonons contained in the collective 
states. The proposed collective Hamiltonian is applied to 
the transitional nuclei 150,152Nd, 150,152Sm and 152Gd, where 
the constants are determined by fitting the experimental 
spectra, the relative E2 transition probabilities and the 
spectroscopic factors for the two-particle transitions to the 
ground and excited   0+  states. The agreement between the 
experimental data and the theoretical description is good. 
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