

ЭЛЕКТРОНОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ КРИСТАЛЛОВ Ga_{0,5}Fe_{0,75}In_{0,75}Se₃

КЯЗУМОВ М.Г., РУСТАМОВА Л.В., КАЗЫМОВ М.Г.*, ИБРАГИМКЫЗЫ Ш.*

Институт Физики НАН Азербайджана Az- 1143, Баку, пр.Г.Джавида, Tel.: 99412 392135, fax: 99412 396961

*Нахичеванское отделение НАН Азербайджана

Структура Ga_{0.5}Fe_{0.75}In_{0.75}Se₃, синтезированного из отдельных элементов, исследована с помощью электрондиффракционного метода косой текстуры и получены следующие соответствующие параметры кристаллической решетки: a=3, 931 Å, c= 38,769Å, пр.гр. R3m, структурный тип ТОТП, тип упаковки анионов серы – гккг. Где T, O и П – соответственно тетраэдр, октаэдр и пустой полиэдр, *г* и к – гексагональная и кубическая упаковка слоев серы.

введение

S.Reil и Н.Наеиseler установили, что кристаллы, входящие в систему FeIn₂S_xSe_{4-x} при $0 \le x \le 1,6$ (температура отжига 600°С) имеют асимметричный ZnIn₂S₄ (III, а) тип структуры [1], а при $2,6 \le x \le 4$ (температурный интервал отжига 600°С-1000°С)шпинелевую структуру. В области $1,8 \le x \le 2,4$ при температуре ниже 850°С кристаллизуются α - FeGa₂S₄ тип структур [2] с параметрами решетки (при x=2): a=3,942Å, c=12,816Å, пр.гр. Р $\overline{3}$ m1, а выше 850°С кристаллизуются MgAl₂S₄ тип структур [3] с параметрами решетки (x=2): a=3,939Å, c=38,432Å, пр.гр. R $\overline{3}$ m.

H.Siwert и др. исследовали кристаллы $Cr_{0,5}FeGa_{1,5}Se_4$ [4] и получили следующие параметры : a=3,828, c=37,94, пр.гр. R3m, a H.D. Lutz и др. кристаллы $Cr_{0,8}FeGa_{1,2}Se_4$ [5] с параметрами решетки: a=3,8284, c=37,914, пр.гр.R3m.

Как видно во всех этих соединениях атомы железа (Fe) двухвалентные.

В этой работе мы приводим результаты электронографического исследования состава Ga_{0,5}Fe_{0,75}In_{0,75}Se₃. Предварительные результаты приведены в работе [6].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

Синтез кристалла произведен из отдельных элементов. Соответствующие навески в количестве 5*г* каждого состава поместили в очищенную высококачественную кварцевую ампулу, которую откачивали до давления 10-4Па, запаивали и помещали в однозонную печь. Температуру печи поднимали до 400°С со скоростью 100°С в час и выдерживали при этой температуре 40 минут, затем температуру с прежней скоростью поднимали до 1000°С и выдерживали 40 минут. После этого температуру печи снижали до 700°С и отжигали образцы в течение 650 часов. Образцы лля электронографического исследования были приготовлены методом осаждения микрокристалликов ИЗ водной суспензии на металлическую сетку, покрытую целлулоидной пленкой. Электронографический экспериментальный материал был получен на электронографе ЭГ-400.

2 L λ =39,32 ммÅ, где L – расстояние от объекта до фотопластинки, λ – длина волны электрона.

На рис. 1 показана электронограмма от текстур кристалла $Ga_{0,5}Fe_{0,75}In_{0,75}$ Se₃, а в таблице 1 приведены некоторые соответствующие параметры рефлексов. Где R_{hkl} –расстояния между рефлексами hkl и \overline{hkl} , D_{hkl} –расстояние (в масштабе L λ) между узлами hkl обратной решетки и плоскостью (0001) кристаллической решетки, d_{hkl} - межплоскостное расстояние.

На рис 1 рефлексы со значениями -*h*+*k*+*l*≠3n отсутствуют. Значит, кристалл имеет ромбоэдрическую структуру. Определены соответствующие параметры кристаллической решетки и пространственная группа

```
a=3,931Å, c=38,769Å, пр.гр. R3m
```


Это означает, что в структуре плотно упакованно могут располагаться двенадцать слоев серы. На рис.1 вторым сильным рефлексом на втором эллипсе (самый сильный рефлекс $11\overline{2}0$) является- $11\overline{2}3$. Ранее нами установлено [7, 8], что значение *l* второго сильного рефлекса в сериях $11\overline{2}l$ (*l* меняется) указывает на количество заполненных катионами полиэдрических слоев. Значит, в структуре только девять полиэдрических слоев из двенадцати заполнены катионами. Значит, структура имеет ТОТП структурный тип, т.е. пакеты состоят из центральных октаэдрических (O) слоев, к ним с двух сторон примыкают тетраэдрические (T) слои, а последний межпакетный полиэдрический слой (П)- пустует.

В структурах, где структурной единицей является один из ТОТП, ТОТТП и ТТОТТП пакетов, переходы пакет-пакет осуществляются по типу гг, т.е. анионы, находящиеся на вершинах пакетов упаковываются по типу гг [1, 9]. Учитывая это и важные правила Н.В. Белова о плотнейшей упаковке [10] установлено, что анионы серы в кристалле Ga_{0,5}Fe_{0,75}In_{0,75}Se₃ упаковываются по типу гккг. Учитывая размеры ионных радиусов и валентностей каждого иона в предложенной нами модели структуры, ионы трехвалентного индия расположены в октаэдрах, а остальные ионы в тетраэдрах. На рис.2 показан план предложенной модели структуры, в которой анионы занимают частные позиции А(0; 0), В(1/3; -1/3), С(-1/3; 1/3). Толщины анионов взяты одинаковыми, а катионы распределены в центрах Т и О полиэдров. Сравнение экспериментальных значений интенсивностей (І_{жс}) рефлексов 1011 и 1011 с их расчетными значениями для этих моделей показало правильность предложенной модели.

Ga_{0,5} Fe_{0,75}In_{0,75}Se₃ на плоскость (11 2 0) в координационных полиэдрах.

В кристалле $Ga_{0,5}Fe_{075}In_{0,75}Se_3$ атомы селена занимают (0; 0; -0,125), (2/3; 1/3; -0,042), (1/3; 2/3; 0,042) и (0; 0; 0,125) позиции, а тетраэдрические катионы занимают (2/3; 1/3; -0,104) и (1/3; 2/3; 0,104) позиции, а октаэдрические катионы индия - (0; 0; 0) позиции.

Распределение катионов в Т и О пустотах, образованных плотнейшими упаковками из анионов селена, соответственно, такое:

... Se 5/6 Fe Se In Se 2/3 Ga; 1/6 Fe Se...

N⁰	2R _{эксп.}	2Д _{эксп.}	2Д _{расч.}	d _{эксп.}	d _{расч.}	Hkil	I/I ₀ (экс.)
1	11,591	1,013	1,014	3,392	3,391	1011	Ср.сильный
2	12,612	5,070	5,071	3,118	3,117	1015	О.сильный
3	15,372	10,142	10,142	2,558	2,558	$10\overline{1}10$	О.слабый
4	16,053	11,155	11,156	2,449	2,448	10111	Средний
5	18,308	14,200	14,199	2,148	2,148	10114	Сильный
6	19,914	16,226	16,227	1,974	1,974	10116	Ср.сильный
7	20,750	17,241	17,242	1,895	1,894	$\overline{1}0117$	Ср.слабый
8	22,466	19,270	19,270	1,750	1,750	10119	Ср.сильный
9	20,006			1,965	1,965	1120	О.сильный
10	21,987	9,127	9,128	1,788	1,788	1129	Ср.сильный
11	23,419	12,172	12, 171	1,679	1,679	11212	Слабый
12	25,141	15,216	15,213	1,564	1,165	$11\overline{2}15$	О.слабый

- [1]. F. Lappe, A. Niggli, R. Nitsche, J.G. White, Z. Kristallogr. 117 (1962) 146.
- L. Dogguy-Smiri, D. Nguyen Huy and M.P. Pardo, [2]. Mater. Res. Bull. 15. 861. (1980).
- J. Flahaut. Ann Chim. 7 (1952) 632. [3].
- [4]. H. Siwert, H.D. Lutz. J.Solid. State Chem, 69 (1987), 215
- [5]. H.D. Lutz, Th. Stingl, Acta crystallogr, Sec C, c.49 (1993) 207.
- [6]. М.Г.Кязумов, Г.Г.Гусейнов, М.Г. Казымов, Ш.Ибрагимкызы . XI Национальная

Конференция по росту кристаллов (НКРК,

- 2004) Москва, 14-17 декабря, 2004, с. 159. Kyazumov. 11th International conference on [7]. Ternary and Multiternary Compounds (ICTMC-11) Salford UK. 8- 12 september, 1997, P1.76
- [8]. М.Г.Кязумов. Кристаллография 1988, т.43, №4, c.661-663.
- S.I. Radautsan, F.G. Donika, G.A. Kyosse, I.G. [9]. Mustya. Phys. Stat. Sol. 1970, v.37, p.k123.
- [10]. Н.В. Белов. Структура ионных кристаллов и металлических фаз- Изд-во АНСССР, Москва, 1947, 237c.