

OPTICAL PROPERTIES OF THE FOUR AMORPHOUS SIO_X PHASES SOBOLEV V.Val., SOBOLEV V.V.

Udmurt State University, Izhevsk, 426034, Russia, sobolev@uni.udm.ru

Для аморфных Si, SiO, SiO_{1.5} и SiO₂ известны экспериментальные спектры отражения R(E) в области 0–26 эВ. На их основе рассчитали спектры полных комплексов оптических фундаментальных функций (ϵ_2 , ϵ_1 , n, k, –Im ϵ^{-1} и др.), спектры ϵ_2 и –Im ϵ^{-1} разложили на поперечные и продольные элементарные составляющие и определили их основные параметры (E_i, H_i, I_i, S_i, f_i). Предположили, что компоненты ϵ_2 SiO₂ и SiO_{1.5} обусловлены экситонами малого радиуса.

We calculate the full complex optical fundamental functions spectra (ε_2 , ε_1 , n, k, $-Im\varepsilon^{-1}$ and others), the ε_2 and $-Im\epsilon^{-1}$ spectra decompose into the transverse and longitudinal components and determine their main parameters (E_i , H_i , I_i , S_i , f_i), using the known R(E) experimental spectra of amorphous Si, SiO, SiO₁₅ and SiO₂ in the energy range 0-26 eV [1] and calculation models of [2]. The four phases $a-SiO_x$ are derived by the R(E) spectra in two groups: Si and SiO, SiO_2 and $SiO_{1.5}$. In each of it, the spectra are very similar by structure but highly different on the intensity. very wide R(E) band of a-Si retains only $\mu(E)$ but converted into very thin peak of n, ε_1 , ε_2 , k, $E^2 \varepsilon_2$. The longwavelength wide R(E) band of a-SiO (2-8 eV) also very sharpening in n and ε_1 but retains wide in ε_2 , k and μ . The shortwavelength R(E) band (13–22 eV) disappears (n, ε_1 , ε_2), retains (k, m) or become the main (μ , $E^{2}\varepsilon_{2}$). The analogs of the a-SiO₂ four R(E) maxima also retained very narrow in the other optical functions. Their analogs of a-SiO₁₅ also well visible in the spectra of all optical functions but two shortwavelength maxima are highly widened in n, ε_1 , ε_2 . It is generally accepted by the qualitative model, the first longwavelength and possibly the three their R(E) maxima of a-SiO₂ caused by excitons. The wide structural similarity of all the optical functions of a-SiO₂ and a-SiO_{1.5} allowed to purpose the main analogical model of the optical function maxima of a-SiO₂ and a-SiO_{1.5}. Very strong exciton effects on the a- SiO_2 and a- $SiO_{1.5}$ spectra but their absence in the a-Si and a-SiO spectra are divided both pairs of amorphous materials in two different groups of the SiO_x phases. They are characterized by two principle different models of electronic structure. We appropriate the energy of possible maxima of the transition bands for the four a-SiO_x phases using the photoemission results [3], and value of E_g in accordance with the our calculated maxima of ε_2 spectra. Further, the ε_2 and $-Im\varepsilon^{-1}$ spectra of four phases obtained were decomposed into the transverse and longi-

- [1]. Philipp H.R. J. Phys. Chem. Sol. 1971. V. 32. P. 1935–1945.
- [2]. Sobolev V.Val. Phys. chem. glass.2002.V.28.P. 560

tudinal components, and their parameters (E_i , H_i , I_i , S_i , f_i) were determined. It was established in all 12 (Si), 18 (SiO), 12 (SiO₂) and 14 components (SiO_{1.5}) (tables 1 and 2).

Table	1. Energy	(eV)]	E _i , areas	s S _i of	'Si and	l SiO	$\epsilon_2(1)$	and
	$-Im\epsilon^{-1}$	(2) coi	nponen	ts				

		Ę	i		Si					
N	Si		SiQ		Si		SiQ			
	1	2	1	2	1	2	1	2		
1	2.75	2.90	-	-	4.6	0.03	-	-		
2	3.50	3.40	3.9	-	35.8	0.03	1.20	-		
3	4.30	4.30	4.8	-	8.7	0.08	3.20	-		
4	5.50	5.4	5.9	-	10.9	0.20	3.60	-		
5	6.80	7.0	7.2	7.4	6.9	0.38	3.60	0.90		
6	8.10	8.6	8.4	-	4.1	0.56	2.60	-		
7	9.60	10.0	9.7	-	3.0	0.77	2.00	-		
8	11.0	11.1	10.5	10.8	2.4	1.03	2.00	1.40		
9	12.4	12.6	11.8	-	1.9	1.25	1.90	-		
10	14.0	14.0	13.4	13.8	1.5	1.35	2.60	0.90		
11	15.9	16.0	16.8	16.3	1.2	7.69	1.20	2.00		
12	-	18.2	18.1	18.0	-	1.90	2.00	0.60		
13	-	-	19.2	19.6	-	-	0.30	2.10		
14	-	-	20.5	-	-	-	1.70	-		
15	-	-	22.1	22.2	-	-	0.4	3.90		
16	-	-	24.0	24.4	-	-	1.40	1.30		
8'	-	-	12.5	-	-	-	0.20	-		
10'	-	-	14.2	-	-	-	0.80	-		
11'	-	-	15.4	-	-	-	2.10	-		

Table 2.Energy (eV) E_i , areas S_i of SiO₂ and SiO_{1.5} ϵ_2 (1) and $-Im\epsilon^{-1}$ (2) components

	Ei				Si					
N	SiO ₂		SiO15		SiO_2		SiO15			
	1	2	1	2	1	2	1	2		
1	9.79	-	9.1	-	1.79	-	0.8	-		
2	10.23	10.64	10.2	10.5	3.64	0.26	3.7	0.3		
3	11.20	11.20	11.2	-	0.34	0.15	1.1	-		
4	11.84	11.9	11.6	-	2.65	0.42	1.3	-		
4'	-	-	12.3	12.4	-	-	1.0	0.5		
5	12.85	13.0	12.8	-	1.09	0.46	0.7	-		
5'	-	-	13.4	-	-	-	1.3	-		
6	14.00	14.7	14.1	14.6	3.40	0.94	1.5	1.3		
7	15.60	16.4	15.3	-	1.86	0.80	2.4	-		
8	16.82	-	16.6	-	2.42	-	2.2	-		
9	17.70	18.1	17.3	17.5	0.73	1.36	1.2	1.5		
10	18.8	19.4	19.0	19.2	1.28	1.29	2.1	0.7		
11	20.30	20.7	20.2	20.6	1.10	1.35	0.7	1.0		
12	22.20	22.0	21.6	-	1.56	2.01	1.2	-		
13	-	23.0	23.2	23.0	-	1.06	1.5	4.4		
14	-	24.5	24.4	24.5	-	0.42	0.4	1.5		
13'	-	23.7	-	-	-	0.76	-	-		

[3]. Bell F.G., Ley L. Phys. Rev. B. 1988. V. 37. P. 8388-8393.