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We prove that nontrivial vacuum states which can arise in hot QCD are associated with the tachyonic regime of hadronic matter 

fluctuations. This allows us to improve the condition for such states to appear. 
 
1.  It is known that at phase transitions from hadronic to 
quark and gluon degrees of freedom nontrivial local 
vacuum states can appear in the hadronic phase [1]. These 
states are metastable and of particular interest since they 
have experimental signatures such as an enhanced 
production of η  and η′  mesons [2]. They can decay via 

CP violating processes such as 00ππη →  and 
because of global parity odd asymmetries for charged 
pions. The decay rate of CP-odd metastable states was 
estimated in [3]. 
     In [4] we used the mean-field approximation to 
develop the kinetic approach to the decay of the CP-odd 
phase in hot QCD and to derive a non-Markovian kinetic 
equation describing the production of η′ - mesons. A 
different kinetic equation was derived for the production 
of tachyonic modes [5]. 
     In the present Talk, we aim to show that in addition to 
these metastable states nontrivial vacua can appear 
according to the standard spontaneous symmetry breaking 
picture provided the hadronic matter fluctuations enter a 
tachyonic regime. 
    2. We start from the singlet Witten-DiVecchia-
Veneziano effective Lagrangian density [6] 
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a parameter depending on −π  and  K-meson masses. 
The parameter 0a  represents the topological 

susceptibility. For zero temperature 0=T , 
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171.02 ≅µ  GeV2 and 93≅πf  MeV. In response to 
non-zero temperature mesons change their effective 
masses, µ  and 0a  becoming functions of T . The model 
is defined in a finite volume: 
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   The meson field ( )tx,rη  obeys the Klein-Gordon type 
equation 
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is non-linear in η , i.e. contains orders 3η  and higher and 
is therefore completely determined by the self-interaction 
of the field η . 
     Following the mean-field approximation we 
decompose ( )tx,rη  into its space-homogeneous vacuum 

mean value ( ) ( )txt ,rηφ =  and fluctuations χ  

( ) ( ) ( )txttx ,, rr χφη +=                       (4)  

with ( ) 0, =txrχ . The vacuum mean field is treated as 
a classical, self-interacting background field. It is defined 
with respect to the in-vacuum 0  as 
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so in the limit −∞→t       ( ) 0→tφ , while quantum 
fluctuations take place at all times. 
   Substituting Eq. (4) into Eq. (3) yields the following 
decomposition for the current 
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 is the current in the first order in χ  with the background 
field – fluctuations interaction term added, while the zero 
order of the current 
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represents only the self-interaction of the background 
field. The second current in the right-hand side of Eq. (6) 
includes terms of second and higher orders in χ  
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Substituting Eq. (4) also into Eq. (2) and taking the mean 
value ...  yields the vacuum mean field equation 
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Eq. (10) is a generalization of the vacuum mean field 
equation used in [5] for non-vanishing values of sJ  

(see also [7]). In the Hartree-type approximation, 
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The equation of motion for the quantum fluctuations reads 

( ϒ ) sseff JJm −=+ χ2              (12)  
with 
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For ( ) ,12
0 <≡ µ

aa  2
effm can be negative for some 

values of the background field indicating a tachyonic 
regime. Eqs.(10) and (12) are self-consistently coupled 
and include back-reactions. The vacuum mean field 
modifies the equation for fluctuations via a time 
dependent frequency, while the fluctuations themselves 
react back on the vacuum mean field via the source term 

sJ . 

    3. With the decomposition (4), we deduce from (1)  the 
effective Lagrangian density governing the dynamics of 
fluctuations 
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Expanding (14) in power series in χ , yields in the 
second order 
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For ,1>a  the second order effective potential of 
fluctuations 

V(2) ( ) 22

2
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is 2χ -type potential with oscillating walls. During the 
time evolution of the background field, the potential (16) 

fluctuates around 2
02

1 χa  in tune with the time 

dependence of φ . For ,1<a  for some values of the 
background field the potential (16) becomes upside down 
without any stable, particle states. 
   Let us consider now the exact form of the effective 
potential , 
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the coordinate of the minimum oscillating in tune with the 
background field. 
     In addition, in the tachyonic regime the effective 
potential exhibits the spontaneous symmetry breaking. 
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Let us compare the form of (17) for two different values 
of the background field, πφ 2=  and πφ = .  For both 

values, 0=sJ  in the Hartree-type approximation. For 

πφ 2= , the effective potential takes the form 
 

( ) 1cos
2

2

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ff
aV χχχ .                 (19)                                                  

It is positive for all values of χ  and its minimum is at 
0=χ . 

    For πφ = , the effective potential becomes 
 

( ) .1cos
2

2

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ff
aV χχχ                    (20) 

  
It is minimized for 
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For 1≥a , Eq. (21) has only trivial solution .0=χ  
However, for 1<a  nontrivial solutions appear. 
    The shape of the potential  ( )χV  for different values 
of a  is plotted below. The nontrivial local minima appear 
for 1<a . For 1>a , the spontaneous symmetry 
breaking does not occur. The special value 217.0=spa  

was found in [1]. For spaa < , the number of nontrivial 
local minima is increasing with decreasing values of a .  
The nontrivial minima are of different energy; the ones of 
higher energy are metastable and can decay by a 
tunneling. 
 

 
 

4. The tachyonic regime can be characterized as a regime 
of spontaneous symmetry breaking. Although 

217.0=spa  is specified in [1] as a special value 
defining the first local minima, we have shown that 
nontrivial minima appear even for .1<< aasp  
    Whether the system evolves in the tachyonic or non-
tachyonic regime is fixed by the value of the background 
field. During its time evolution, energy is transferred from 
φ  to χ . As a result, φ  is damped, while the number of 

particles in quantum fluctuations increases. If, for 
example, ( ) πφ 20 ==t , then the quantum fluctuations 
first evolve in the standard, non-tachyonic regime. As 
soon as ( )tφ  reaches π , the tachyonic regime starts (for  

1<a ), and the intensive production of tachyonic modes 
results in a rapid damping of φ . 
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