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ON SPONTANEOUS SYMMETRY BREAKING IN HOT QCD
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We prove that nontrivial vacuum states which can arise in hot QCD are associated with the tachyonic regime of hadronic matter
fluctuations. This allows us to improve the condition for such states to appear.

1. It is known that at phase transitions from hadronic to
quark and gluon degrees of freedom nontrivial local
vacuum states can appear in the hadronic phase [1]. These
states are metastable and of particular interest since they
have experimental signatures such as an enhanced

production of 77 and 77" mesons [2]. They can decay via

CP violating processes such as 77—>7r°7z° and

because of global parity odd asymmetries for charged
pions. The decay rate of CP-odd metastable states was
estimated in [3].

In [4] we used the mean-field approximation to
develop the kinetic approach to the decay of the CP-odd
phase in hot QCD and to derive a non-Markovian kinetic

equation describing the production of 7'- mesons. A

different Kinetic equation was derived for the production
of tachyonic modes [5].

In the present Talk, we aim to show that in addition to
these metastable states nontrivial vacua can appear
according to the standard spontaneous symmetry breaking
picture provided the hadronic matter fluctuations enter a
tachyonic regime.

2. We start from the singlet Witten-DiVecchia-
Veneziano effective Lagrangian density [6]

L (6#77)(8”77)+ f2u’ cos[%)
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where f = \/;fﬁ and f_=92 MeV is the semi-
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leptonic pion decay constant; u :§ m_~+2m," | is

a parameter depending on 7z — and K-meson masses.
The parameter @, represents the topological
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susceptibility. For zero temperature T =0,

o 2 2 2 2
a,=m,~+m, ~ —2m," =0.726 GeV",
1> =0.171 GevZand f_ =93 MeV. In response to
non-zero temperature mesons change their effective

masses, & and @, becoming functions of T . The model
is defined in a finite volume:

L/ <y <L/ j_
Lo<x <Lji=123
The meson field n()?,t) obeys the Klein-Gordon type

equation
(r+m® =3, @)
where m02 =q, + 4° and the current
vl T 7] o

. . . . . 3 .
is non-linear in 77, i.e. contains orders 77 and higher and

is therefore completely determined by the self-interaction
of the field 7.

Following the mean-field approximation we
decompose n()?,t) into its space-homogeneous vacuum

mean value ¢5(t) = <n()?,t)> and fluctuations y
n(%,t)= g(t)+ 2(%1) @
with <)(()?,t)> = 0. The vacuum mean field is treated as

a classical, self-interacting background field. It is defined
with respect to the in-vacuum |0> as

o) = ((%.0) = 5 [ax(o(20)0). @



so in the limit t — —oo0 ¢(t) — 0, while quantum

fluctuations take place at all times.
Substituting Eg. (4) into Eq. (3) yields the following
decomposition for the current

J, =39+,
where

3,9 =39 +,u{1—cos(?ﬂ;(

is the current in the first order in y with the background
field — fluctuations interaction term added, while the zero

order of the current

it

f

represents only the self-interaction of the background
field. The second current in the right-hand side of Eq. (6)
includes terms of second and higher orders in y
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Substituting Eq. (4) also into Eq. (2) and taking the mean
value <> yields the vacuum mean field equation

é+a,p+ fu’ sin{?j =(J,).

Eg. (10) is a generalization of the vacuum mean field
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equation used in [5] for non-vanishing values of <js>

(see also [7]). In the Hartree-type approximation,

)

The equation of motion for the quantum fluctuations reads
) —
(y+myg? )r=3,-(J;) (12)

My =a, + i cos(?j.

Fora= ( %2 )< 1 my ? can be negative for some

with

(13)

values of the background field indicating a tachyonic
regime. Egs.(10) and (12) are self-consistently coupled
and include back-reactions. The vacuum mean field
modifies the equation for fluctuations via a time
dependent frequency, while the fluctuations themselves
react back on the vacuum mean field via the source term

(3.
3. With the decomposition (4), we deduce from (1) the

effective Lagrangian density governing the dynamics of
fluctuations
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£(x)
= %(@H;(XG”Z)JF f2u? cos(?} : [cos[%j —1}
~t22sin| 2| | sin £ |-
sl §)
a _
_70)(2 _<‘]s>/1/
Expanding (14) in power series in y , yields in the
second order
_lmeﬁ 2)(2'

£0)-10,2)072)-

For @ >1, the second order effective potential of
fluctuations

Y4

f (14)

(15)

vO(y) (16)

is ;(2 -type potential with oscillating walls. During the
time evolution of the background field, the potential (16)

1 2 2
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2 eff X

1
fluctuates around angz in tune with the time

dependence of @. For a <1, for some values of the

background field the potential (16) becomes upside down
without any stable, particle states.
Let us consider now the exact form of the effective
2

V=1, V(z)zg(%)2+ @(g)
{tfofi]
il

It also changes during the time evolution of ¢. First of
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al, the term ——(3, | £ | shifs the minimum of
fu f

(3.)

% -potential from y =0 to y = —~—~

(] t(7)-
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the coordinate of the minimum oscillating in tune with the
background field.
In addition, in the tachyonic regime the effective

potential exhibits the spontaneous symmetry breaking.
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Let us compare the form of (17) for two different values
of the background field, ¢ =27 and ¢ = 7. For both

values, <js> = 0 in the Hartree-type approximation. For

@ = 27 , the effective potential takes the form
a [ 7

Viy) ; f]z —COS(%j-Fl.

It is positive for all values of y and its minimum is at

x=0.
For ¢ = 7, the effective potential becomes

2
alz + COS £ -1.
20 f f

It is minimized for

(19)
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j = sin(l}
f

For a>1, Eqg. (21) has only trivial solution y =0.

However, for a <1 nontrivial solutions appear.

The shape of the potential \7( ;() for different values
of a is plotted below. The nontrivial local minima appear
for a<1l. For a>1, the spontaneous symmetry
breaking does not occur. The special value ag, = 0.217

was found in [1]. For a < A, the number of nontrivial

local minima is increasing with decreasing values of a.
The nontrivial minima are of different energy; the ones of
higher energy are metastable and can decay by a
tunneling.

)

4. The tachyonic regime can be characterized as a regime
of  spontaneous symmetry  breaking.  Although

a,, =0.217 is specified in [1] as a special value
defining the first local minima, we have shown that
nontrivial minima appear even for ag, <a< 1.

Whether the system evolves in the tachyonic or non-

tachyonic regime is fixed by the value of the background
field. During its time evolution, energy is transferred from

@ to y.Asaresult, @ is damped, while the number of

particles in quantum fluctuations increases. If, for
example, @t =0)= 27, then the quantum fluctuations
first evolve in the standard, non-tachyonic regime. As
soon as ¢(t) reaches 77, the tachyonic regime starts (for
a < 1), and the intensive production of tachyonic modes
results in a rapid damping of ¢ .
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