

ИССЛЕДОВАНИЕ ВНУТРЕННЕГО ТРЕНИЯ В ПОЛУПРОВОДНИКАХ IV-VI

ДАВАРАШВИЛИ О.И., ДАРСАВЕЛИДЗЕ Г.Ш., ЕНУКАШВИЛИ М.И., КЕКЕЛИДЗЕ Н.П., МАМЕДОВ Т.С.*, АХМЕДЗАДЕ Н.Д.*

Тбилисский Государственный Университет им.Ив.Джавахишвили Тбилиси 0128, пр.Чавчавадзе 1 e-mail: <u>davartsu@yahoo.com</u>, тел. (99532) 322619 факс (99532) 221965

> *Институт физики НАН Азербайджана Баку К21143, пр. Г.Джавида 33 e-mail <u>nicat-ifan@rambler.ru</u>, тел.(99412) 329857 факс (99412) 329857

В работе впервые изучено внутреннее трение (ВТ) в полупроводниках IV-VI .Для диагностики и определения активационных параметров движения дефектов в кристаллах PbSe и PbTe исследованы температурная и амплитудная зависимости внутренего трения при крутильных колебаниях с частотами ~1Гц в интервалах температуры 20-600С и амплитуды колебательной деформации $5.10^{-5} - 10^{-2}$. В температурных спектрах ВТ обнаружены два максимума : температуры , энергии активации и частотные факторы которых изменяются в пределах 200-400С, 1,2- 1,8эВ и 10^{13} - 10^{14} с-1. По амплитудной зависимости интенсивности и активационных характеристик установлено дислокационное происхождение указанных максимумов ВТ. На амплитудных зависимостях ВТ образцов PbSe обнаружены области слабого и сильного возрастания ВТ, разделенные критической амплитудой колебательной деформации и три области : слабого , умереннего и резкого возрастания ВТ. Установлено , что легирование PbSe таллием понижает , а хром увеличивает значение первой критической амплитуды . Значения первой и второй критических амплитуд резко возрастают в PbTe, легированном хромом.

Обнаружение релаксационных максимумов ВТ трактуется как обусловленное миграцией различных дислокации, взаимодействующих со слабыми и относительно сильными точечными центрами закрепления (примеси, комплекс примесьвакансия). В качестве механизма происхождения первой критической амплитуды колеба-тельной деформации предлагается отрыв дислокации от слабых центров (простой комплекс : примесь –вакансия), а второй – отрыв от сильных центров (сложные комплексы : вакансия или примесь и примесь –вакансия) закрепления .Путем сравнения с временами жизни в гетероструктурах показано, что вторая критическая амплидута деформации близка к пределу упругости.

Результаты проведенных исследований показывают . что в единой модели оптимизации оптоэлектронных приборов учет упругих (механических) свойств полупроводников является новым важным фактором наряду с тепловыми, электрическими и оптическими характеристиками .

Полупроводники IV-VI уже широко применяются в приборах ИК оптоэлектроники. В единой модели оптимизации оптоэлектронных приборов при рассмотрении тепловых, электрических и оптических процессов минимизированы пороговые токи и достигнуты высокая мощность в лазерах и высокая чувствительность в фотоприемниках [1].В то же время, как показывают последние исследования [2, 3] есть новые ресурсы в гетероструктурах IV-VI, использование которых может привести к дальнейшему снижению порогов в лазерах и повышению чувствительности в фотоприемниках и соответственно их рабочих температур. Оказалось, что даже в изопериодных гетероструктурах IV-VI в технологических процессах их создания в активных областях возникают рассогласованные области такой ширины, что соответствующие им напряжения превосходят пре-дел упругости. В случае их релаксации размножающиеся дислокации могут увеличить пороговый ток в 5-6 раз. С целью расширения диапазона предела упругости нами было предложено легировать полупроводники IV-VI примесями , понижающими их параметр кристаллической решетки : Ca, Cr, Mn , Ga и др . [3].

Некоторые из указанных примесей (Cr, Ga) приводят одновременно и к стабилизации уровня Ферми. Расширение предела упругости позволит в тонких напряженных слоях эффективно смещать примесные уровни относительно краев зон, в том числе переводя материал из полупроводникого в диэлектрическое состояние. Это позволит, наряду с долговременной релаксацией, достигнуть в фотоприемниках чувствительности, близкой к теоретическому пределу при максимальных рабочих температурах [3].

Как известно, предел упругости определяется значением модуля упругости и критической предельной деформацией. Модуль сдвига (упругости) обусловлен как межатомным взаимодействием в кристалле, так и степенью дефектности. Степень дефектности влияет и на величину предельной деформации.

Для установления зарождения и природы дефектов весьма успешно используются методы акустической спектроскопии, в частности , метод низкочастотного внутреннего трения . Путем изучения внутреннего трения в широком интервале температур и амплитуд колебательной деформации определяются абсолютные значения механических модулей упругости и сдвига , на основе анализа активационных характеристик движения дефектов идентифицируются их различные типы , оцениваются ступенчатые критические амплитуды деформаций, при которых начинается разрыв связи дефектов с различными комплексами в кристаллической решетке

В настоящей работе впервые проведено изучение внутреннего трения (ВТ) в нелегированных и легированных кристаллах PbSe и PbTe. Кристаллы получены методом ПЖК и горизонтальной зонной плавкой. Концентрация легирующих примесей Cr, Mn, Ca, Tl в кристаллах составляет 5.10¹⁸ – 10¹⁹ см⁻³ [4].

ВТ и модуль сдвига определяли методом регистрации логарифмического декремента затухания и собственной частоты свободнозатухающих колебаний на лабораторной экспериментальной установке типа [5]. Измерения проводили в вакууме ~ 10⁻⁵мм рт.ст и колебательной деформации 5.10⁻⁵ – 8.10⁻³. Температурные спектры ВТ измеряли при скорости нагрева или охлаждения 2 град/мин.

Образцы с размерами 0,5х0,5(10-12) мм3 закрепляли огнеупорным клеем на основе каолина на оси прямого крутильного маятника и дальнейшее высушивание контактов крепления проводили в вакууме при 80-100С в течение 5 ч.

Внутреннее трение рассчитывали по известной формуле [6]:

$$\mathbf{Q}^{-1} = \frac{1}{\pi N} \cdot \ln \cdot \frac{a_n}{a_{n+N}}$$

где N – число колебаний , за которое амплитуда уменьшается от значения a_n до a_{n+N} Точность измерения BT ~ 5% .

Абсолютные значения модуля сдвига определяли методом сравнения с эталонным образцом по формуле :

$$\mathbf{G} = \mathbf{G}_0 \cdot \frac{f^2}{f_0^2},$$

где G_0 и f_0 – модуль сдвига и частота колебаний эталонного образца с идентичными размерами , закрепленного в том же крутильном маятнике . Точность оценки G составляет 3-5% .

Амплитудную колебательную деформацию оценивали по известному выражению :

$$\mathcal{E} = \frac{r \cdot L}{l \cdot R},$$

где r - радиус окружности , описанной на поперечном сечении образца , l – длина образца , R – расстояние от образца до измерительной оптической шкалы , L – отклонение светового луча от начала отсчета амплитуды колебаний на измерительной шкале .

Энергию активации релаксационного процесса рассчитывали по формуле [6] :

$$H = kT_{\max} \cdot ln \cdot \frac{k \cdot T_{\max}}{hf_{\max}}$$

где T_{max} и f_{max} абсолютная температура и частота колебаний при релаксационном максимуме внутреннего трения .

Частотный фактор релаксационного процесса оценивали из условия $\omega\tau$ =1 , где ω = $2\pi f_{max},~a$ τ =

 $\tau_0 \cdot \exp \frac{H}{KT}$ — время релаксации, τ_0^{-1} - частотный фактор.

В температурном спектре ВТ нелегированного образца PbSe на частоте колебаний 3,8Гц наблюдаются два максимума при 260 и 395°С (рис.1). Они наложены на практически независящем от температуры фоне, вплоть до 650°С .Форма спектра ВТ не изменяется в процессе охлаждения с 650°С. Выдержка в вакууме при температурах максимумов ВТ не вносит существенных изменений в их интенсивность, форму и температурное положение. Эти характеристики изменяются с изменением амплитуды колебаний . При повышении амплитуды колебаний оба максимума смещаются в сторону низких температур на 10-15К, уширяются и увеличиваются по высоте. Указанные изменения особенно отчетливы при измерении спектра ВТ в области амплитудных значений колебательной деформации ~1.10⁻⁴ -5.10⁻³. При последующем уменьшении амплитуды колебаний до значения ~5.10 практически полностью восстанавливаются исходные температуры, форма и интенсивность максимумов BT

Рис. 1. Температурные спектры внутреннего трения и модуля сдвига PbSe ($f_0 = 3,85 \Gamma \mu$)

Изменение частоты колебаний в пределах 1,5-4 Гц вызывает сдвиг максимумов в сторону высоких температур , что указывает на их релаксационное происхождение . Расчеты показали , что максимумы ВТ при 260 и 395°С характеризуются значениями энергии активации 1,30 и 1,70эВ . Соответствующие величины частотного фактора равны 3.10¹³ и 4,5.10¹³ с¹

На	кривой	температурной	зависимости
относит	ельного моду	иля сдвига $rac{f^2}{f_0^2}$ (T)	,

(где f – текущая , а f₀ – фиксированная начальная частота колебаний) в области максимумов BT обнаруживаются спады. Их глубина пропорциональна интенсивности максимумов BT и увеличивается с ростом амплитуды колебаний.

Легирование таллием (~10¹⁸см⁻³) почти на 15-25К смещает максимумы ВТ в сторону низких температур и понижает их интенсивность . Заметно уменьшается и глубина спадов модуля сдвига в области температур максимумов ВТ по сравнению с нелегированным PbSe . Интенсивность максимумов возрастает при повышении амплитуды колебательной деформации. Обнаруживается также тенденция понижения их активационных характеристик (энергия активации, частотный фактор). Кратковременные отжиги (0,5ч) в отличие от нелегированных образцов уменьшают интенсивности максимумов ВТ на 10%. Их последующее восстановление до исходного значения происходит после циклической деформации при амплитудах 2.10⁻⁴ в области второго максимума ВТ (~380-400°С). Релаксационные максимумы ВТ устойчивы относительно отжига при 600°С в течение 3ч. В образцах, легированных хромом, указанные максимумы смещаются в сторону высоких температур и характеризуются большими значениями

интенсивности активационных характеристик и уширяются . При максимумах ВТ модуль сдвига понижается , в особенности для PbSe :Tl .

Для проявления амплитудной зависимости высоты максимумов ВТ необходимо приложение к образцу PbSe: Сг заметно большей (~10-4) колебательной деформации по сравнению С предыдущими образцами . Отжиг при 600°С в течение практически не оказывает влияния 3ч. на характеристики максимумов ВТ и на поведение фона ВТ в области температур от комнатной до 650°С. Легирование хромом также увеличивает значение энергии активации частотного фактора (табл.1).

Табл.	1. Активационные характеристики релак-
	сационного внутреннего трения в PbSe

Образцы	T _{max} , ⁰ C	f _{max} ,c ⁻¹	Энергия активации, эВ	Частотный фактор, ·10 ¹³ с ⁻¹
PbSe	260	3,80	1,30	3
	395	3,65	1,70	4,5
PbSe:Tl	235	3,75	1,25	2,2
	380	3,60	1,60	4
PbSe:Cr	280	3,85	1,35	5,1
	425	4,00	1,75	6,3

В зависимости от условий получения абсолютная величина динамического модуля сдвига образцов PbSe изменяется в пределах (1,34-1,5).10¹¹дн/см². Его заметное понижение (~ 5- 8%) наблюдается в образцах PbSe:Tl после циклической деформации при амплитудах ~1.10⁻⁴ в области температур 400-600^oC. Оно исчезает после последующего отжига в течение 0,5ч в области температур ~ 400^oC.

Изменение абсолютных значений модуля сдвига находится в корреляции с изменениями микротвердости, измеренной при комнатной температуре на приборе ПМТ-3 под нагрузкой 10-20Г/см2. Наименьшими значениями микротвердости (табл.2) характеризуются образцы PbSe :Tl . Относительно больщие значения зафиксированы в образцах нелегированного PbSe. Повышенные значения микротвердости характерны для образцов PbSe, легированных хромом. На кривой амплитудной зависимости BT нелегированного PbSe наблюдаются два участка: весьма слабого возрастания ВТ и его увеличения, разделенные критической резкого относительной колебательной амплитудной деформацией ~9.10-4.

Табл. 2 Физико - механические характеристики PbSe при T = 300 К

Образцы	Микротвердость,	Модуль	Критическая
	$K\Gamma/mm^2$	сдвига,	амплитуда,
		10^{11} дн/см ²	10^{4}
PbSe - 1	47	1,34	8,96
PbSe - 2	48	1,5	9,20
PbSe - 3	49	1,40	9,0,2
PbSe:Tl	42	1,14	8,30
PbSe:Cr	55	2,44	23,51

При этой амплитуде начинается также значительное понижение относительного модуля сдвига (рис.2).

Амплитуда относительной колебательной деформации ε · 10⁴

Рис. 2. Амплитудная зависимость внутреннего трения и модуля сдвига в PbSe

Легирование таллием понижает критическую амплитуду до 7,3.10⁻⁴, увеличивает наклон кривой ВТ в области малых амплитуд колебаний. Скорость роста ВТ особенно возрастает при больших значениах амплитуд колебаний. Соответственно происходит более резкое снижение модуля сдвига.

Характер изменения ВТ и относительной величины модуля сдвига в зависимости от амплитуды колебательной деформации для образца PbSe показан на рис.2. Из рисунка видно, что на кривых амплитудной зависимости модуля сдвига резко разграничены области слабого и сильного изменения. Это обстоятельство позволило с повышенной точностью (`~3%) оценить критическую амплитуду колебаний.

Аналогичная картина температурного спектра ВТ наблюдается и в PbTe. Однако, в отличие от кристаллов PbSe с повышением амплитуды колебаний в них (часто до разрушения) наблюдается вторая критическая амплитуда колебательной деформации. В таблице 3 приводятся данные по первым и вторым критическим амплитудам деформации для нелегированного и легированного хромом (0,5ат%) PbTe. Подобные результаты получены и при легировании кристаллов PbTe примесями Mn и Ca.

Табл. 3. Критические амплитуды колебательной деформации в РbTе в диапазоне 300 - 500К.

	I критическая амплитуда деформации		II критическая амплитуда деформации		
T,K	PbTe	PbTe	РbTe (нелег.)	PbTe	
	(нелег.)	(лег. CrTe-0,5		(лег. CrTe-	
		мол%)		0,5 мол%)	
300	7,80	26,80	24,30	86,20	
350	5,81	9,12	22,57	84,32	
400	4,75	4,14	21,76	82,81	
450	4,12	2,17	20,92	80,43	
500	3,70	1,51	20,15	78,45	

Таким образом, исследование температурного спектра ВТ показало наличие двух максимумов релаксационного происхождения с четко различающимися значениями температур, энергии активации и частотного фактора. Возрастание высоты максимумов при колебаниях с амплитудой 10⁻⁴ и превышение их частотного фактора на 2-3 порядка по сравнению со значениями для изолированного точечного дефекта дают основание отнести их к релаксационным максимумам деформационного происхождения [7].

Наличие двух релаксационных максимумов, повидимому, связано с несколькими системами плоскостей скольжения дислокаций в халькогенидах свинца [8]. Среди них основными являются плоскости

{110} и {100} с векторами Бюргерса типа $\frac{a}{2}$ <110>

[9]. С учетом специфики дислокационной структуры можно предположить, что первый максимум ВТ связан с движением дислокации системы {110}, а второй - {100}. В обоих случаях движение дислокаций происходит под влиянием вакансий и легирующих примесей.

Легирование PbSe и PbTe таллием или хромом на 10-15% изменяет интенсивности максимумов BT при уровне легирования 1018-1019см⁻³, активационные характеристики также незначительно изменяются . Атомы таллия при замещении свинца увеличивают параметр кристаллической решетки, создают силы отталкивания между атомами , принадлежащими дислокациям, и примесью и вакансиями. В результате понижается потенциальный барьер для движения дислокаций в форме закрепленной струны или перегибов, что приводит к уменьшению значений модуля сдвига и критической амплитуды отрыва дислокаций.

В случае легирования хромом из-за малости атомного радиуса происходит возрастание сил притяжения между атомами матрицы и хромом в ядре дислокации и стягивание вакансий в область сжатия, т.е. создаются условия для образования комплексов. Такие образования способны усилить закрепление сегментов дислокаций и затруднить их отрыв. В результате модуль упругости и критическая амплитуда колебаний возрастают не менее чем в 2-3 раза по сравнению с нелегированными полупроводниками. Наличие двух критических амплитуд колебательной деформации связано с взаимодействием дислокаций с относительно слабым центром закрепления (простой комплекс : вакансия – примесь) и более сильным (сложный комплекс: вакансия или примесь и вакансия-примесь).

Важно отметить, что в гетероструктурах PbTe-PbSnTe с двусторонним ограничением найдено, что при рассогласовании ~2·10⁻³ (содержание SnTe~0,14) время жизни на 80% определяется состояниями на гетерогранице [10]. Т.е. резко возрастает плотность поверхностных дефектов на гетерогранице И состояние весьма близко к пределу упругости. Это означает также, что вторая критическая амплитуда деформации -2,6.10⁻³. установленная нами нелегированном PbTe, весьма близка к предельной деформации, а при легировании хромом ее значение может возрасти до 3-3,5 раз. Как показали наши контрольные измерения, изменение в пределах упругости при легировании примесями на уровне десятых долей процента набдюдаются также в Si (As, Р) и GaAs (Zn, Te). Однако, в этом случае степень изменения меньше - порядка 1,5.

Таким образом, в результате проведенных исследований выявлен ресурс изменения предела упругости путем легирования полупроводников IV-VI примесями на уровне менее 1 ат%. Наряду с тепловыми, электрическими И оптическими свойствами при оптимизации оптоэлектронных приборов, как следует из этих результатов, важно учитывать механические свойства И полупроводниковых материалов.

- Даварашвили О.И. Исследование твердых растворов соединений IV-VI и создание ИК лазеров на их основе. Докторская диссертация, М., 1993.
- [2]. Davarashvili O.I., Enukashvili M.I., Kekelidze N.P. and etc. . Georgian Engineering News , 2002 , 2,7.
- [3]. Даварашвили О.И., Дарсавелидзе Г.Ш., Енукашвили М.И. и др . Georgian Engineering News , 2004 , 4 , 20 .
- [4]. Даварашвили О.И., Енукашвили М.И., Ахмедзаде Н.Д. и др. (в печати).

- [5]. Кришпал М.А., Пигузов Ю.В., Головин С.А.. Внутреннее трение в металлах и сплавах, М... Металлургия. 1969, 245 с..
- [6]. Александров Л.Н., Зотов М.И. Внутреннее трение и дефекты в полупроводниках. «Наука», 1979, 158 с.
- [7]. Зинер К. В кн. Упругость и неупругость металлов. М., ИЛ, 1954, 9-168.
- [8]. Хирт Дж. Лоте И. Теория дислокаций. М.Атомиздат, 1972, 510с.
- [9]. Matthews I.W., J Vac.Sci. Technol., 1975, v.12,1,126
- [10]. Kasemset D/, Fonstad C. Appl.Phys.Lett , 1979, 34(7) ,1,432 .