

ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В НОВОМ ФЕРРОМАГНЕТИКЕ Cd_{1-x}Mn_xGeAs₂

МОЛЛАЕВ А.Ю.¹, КАМИЛОВ И.К.¹, АРСЛАНОВ Р.К.¹, ЗАЛИБЕКОВ У.З.¹, МАРЕНКИН С.Ф.², НОВОТОРЦЕВ С.М.², МИХАЙЛОВ С.Г.²

¹Институт физики Дагестанского Научного центра РАН 367003, Россия, Махачкала, ул.М.Ярагского,94 E-mail: <u>a.mollaev@mail.ru</u>

²Институт общей и неорганической химии РАН им. Курнакова, Россия, Москва

Измерены барические зависимости удельного электросопротивления и коэффициента Холла при гидростатическом давлении на новых магнитных полупроводниках $Cd_{1-x}Mn_xGeAs_2$ с различным содержанием марганца (x=0.06 и 0.18). На барических зависимостях удельного электросопротивления ρ и коэффициента Холла $R_H(P)$ обнаружены структурные фазовые переходы. В области комнатных температур по барическим зависимостям $\rho(P)$ и $R_H(P)$ определены характеристические точки и параметры фазового превращения, а также рассчитана динамика изменения фазового состава от давления.

1. ВВЕДЕНИЕ

В связи с обнаружением высокотемпературного ферромагнетизма в полупроводниковых соединениях с алмазоподобной структурой, магнитные полупроводники стали объектом повышенного внимания. Как следует из литературных данных [1-3] возникновение высокотемпературного ферромагнитного состояния в этих полупроводниках легированных марганцем обусловлено двумя факторами: увеличением концентрации магнитных примесных атомов и ростом концентрации свободных носителей тока - дырок (марганец является акцептором). Так как эти соединение обладает полупроводниковыми и магнитными свойствами, что делает перспективным материалом для применения в спинтронике. В ИОНХ РАН было получено многокомпонентное соединение Cd_{1-x}Mn_xGeAs₂ c температурой Кюри 355 К. [4]. По данным рентгенофазового анализа все образцы имели структуру и являлись однофазными [4]. Измерение намагниченности производились СКВИД-магнитомером и электросопротивления - четырехзондовым методом. Парамагнитная (ПМ) восприимчивость была измерена весовым методом с электромагнитной компенсацией. Температуры Кюри Т_с образцов, определенные как температуры максимумов на кривых (dM/dT(T)), где M – намагниченность, Из эксперимента следует, что T > 300 К, и для составов с 3 и 6 масс %Мп достигают 355К. Это самая высокая темпеРатура Кюри в системах AⁿB^{IV}C^V₂Mn. Так как характер легирования и наличие свободных носителей заряда определяют магнитные свойства этих материалов, представлялось интересным изучите их транспортных свойств при высоком давлении.

2. МЕТОДИКА И ТЕХНИКА ЭКСПЕРИМЕНТА.

Было измерено 2 образца Cd_{1-x}Mn_xGeAs₂: x=0.06 (образец №1,монокристалл), и образец №2 с х=0.18, поликристалл. Параметры измеренных образцов сведены в таблицу №1. Измерения проводились в аппаратах высокого давления типа наковальня с лункой с тороидальной поддержкой при гидростатическом давлении до 9ГПа, при подъеме и сбросе давления [5]. Аппарат высокого давления помещается в соленоид с напряженностью магнитного поля H<5кЭ [6].Образцы имели форму параллелепипеда размерами 2.7x1x1 мм. В качестве среды передающей давление использовалась смесь метанола-этанола в соотношении 4:1, которая обеспечивала гидростатичность до 10 ГПа [7]

Таблица

Образцы	Х	R _H ,	ρ, Ω·cm
		cm ³ C ⁻¹	
<i>p</i> -Cd _{1-x} Mn _x GeAs ₂	0.06	2250	10
<i>p</i> -Cd _{1-x} Mn _x GeAs ₂	0.18	10	0.23

3. ОБСУЖДЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ.

На рисунках 1-3 представлены экспериментальные результаты исследования барических зависимостей удельного электросопротивления ρ и коэффициента Холла R_H для образцов №1 и №2.

Рис.1. Барические зависимости удельного электросопротивления и коэффициента Холла для

Cd_{1-x}Mn_xGeAs₂ (образец №1).

Из барических зависимостей удельного электросопротивления $\rho(P)$ при подъеме давления (рис.1, черные точки) меняется слабо до давления $P \leq 0.9$ GPa, что обусловлено тем, что слабый рост концентрации носителей заряда компенсируется падением их подвижности. При давлении $P=0.9\pm0.1$ GPa удельное сопротивление резко падает почти на 5 порядков – начинается фазовый переход, при давлении P>1.6 GPa кривая $\rho(P)$ выходит на насыщение, фазовый переход заканчивается.

В области насыщения $\rho(P)$ при P>1.6 GPa величина удельной электропроводности $\sigma \approx 3000 \ \Omega^{-1}$ сm⁻¹ значительно превышает теоретически рассчитанные значения минимальной металлической проводимости [8], которая по разным оценкам составляет от 200 до 1000 Ω^{-1} сm⁻¹, что позволяет утверждать, что в конце фазового перехода имеет место металлическая проводимость. При сбросе давления (кривая 1, светлые точки) зависимость $\rho(P)$ испытывает гистерезис и при P=0.6±0.05 GPa наблюдается фазовый переход.

Аналогичный сценарий наблюдается и на барической зависимости коэффициента Холла (рис.1). После фазового перехода в области насыщения при P>1.6 GPa концентрация носителей составляет $\approx 10^{20}$ cm⁻³, что еще раз подтверждает наличие металлической проводимости.

Наличие гистерезиса на барических зависимостях $\rho(P)$ и $R_H(P)$ и тот факт, что величины удельного электросопротивления и коэффициента Холла при атмосферном давлении совпадают со значениями удельного электросопротивления и коэффициента Холла после снятия давления, позволят сделать вывод, что в $Cd_{1-x}Mn_xGeAs_2$ (*x*=0.06) обнаружен

обратимый структурный фазовый переход полупроводник-металл.

В образце №2 при подъеме давления (рис.2, черные точки) барическая зависимость удельного сопротивления $\rho(P)$ до давлений Р≤4.5 GPa меняется слабо, что обусловлено взаимной компенсацией изменения концентрации и подвижности носителей заряда. При Р=4.5±0.2 GPa $\rho(P)$ резко падает почти на три порядка и при Р>6.5 GPa выходит на насыщение, наступает металлизация, $\sigma \approx 2850 \ \Omega^{-1}$ сm⁻¹. При сбросе давления (светлые точки) наблюдается значительный гистерезис и при Р=3.1±0.1 GPa на кривой $\rho(P)$ имеет место фазовый переход.

Рис.2. Барическая зависимость удельного электросопротивления Cd_{1-x}Mn_xGeAs₂ (образец №2).

Барическая зависимость коэффициента Холла (рис.3) имеет более сложный характер. На ней можно выделить четыре области: 1 область – P<0.6 GPa – коэффициент Холла растет с давлением – область примесной проводимости; 2 область – P=0.6÷1.9 GPa – коэффициент Холла выходит на плато – область истощения носителей заряда; 3 область – P=1.9÷4.5 GPa – область падения коэффициента Холла почти до нуля с последующим возрастанием, причина которого обсуждается и 4 область – P=4.5÷6.5 GPa – область фазового превращения. В области насыщения $R_{\rm H}(P)$ при P>6.5 GPa концентрация носителей заряда л≈5·10²⁰ cm⁻³.

Проанализировав поведение барических зависимостей р(Р) и R_H(Р) для образца №2 можно по аналогии с образцом №1 сделать вывод, что в $Cd_{1-x}Mn_xGeAs_2$ (x=0.18)так же имеет место обратимый структурный фазовый переход полупроводник-металл. Сравнение данных [9] и результатов, полученных нами ранее в n- и p-InAs и CdTe [6,10,11] с известными ланными по рентгеноструктурным исследованиям фазовых переходов под давлением [12] свидетельствует о том, что наличие термодинамического гистерезиса, т.е. смещение начала фазового перехода Р_b при подъеме давления относительно начала фазового перехода P_b' при сбросе давления (см. табл. №2), позволило сделать нам вывод о том, что при наличии

термодинамического гистерезиса в исследованных образцах имеет место структурный фазовый переход.

Рис.3а. Зависимость объемной доли исходной фазы C₁ от давления при подъеме и сбросе давления для Cd_{1-x}Mn_xGeAs₂ (образец №1).

Рис.3. Барическая зависимость коэффициента Холла Cd_{1-x}Mn_xGeAs₂ (образец №2).

Ha основе представлений 0 поведении гетерофазных структур под давлением в области превращения [13-18], фазового методологии изложенной в работе [19] собственных И экспериментальных данных определены характеристические точки и параметры фазового перехода: точки фазового равновесия Ро, точки равновесия гистерезис метастабильного P_{MP}, термодинамический Р_{GT}, гистерезис флуктуационный Р_{GF} при подъеме и сбросе давления для всех исследованных образцов. Полученные результаты приведены в таблице 2 (подъем давления) и таблице 3 (сброс давления). Toganno 2

	Габлица 2							
N₂	Образиии	х	P _b ,	P _e ,	Po,	P_{MP}	P _{GT} ,	P _{GF} ,
	Ооразцы		GPa	GPa	GPa	GPa	GPa	GPa
1	<i>p</i> -Cd _{1-x} Mn _x GeAs ₂	0.06	0.9	1.6	0.75	1.25	0.8	0.7
2	p-Cd _{1-x} Mn _x GeAs ₂	0.18	4.5	6.5	3.8	5.5	2.5	2.0

Таблица 3.

№	Образцы	х	P _b ', GPa	P _e ', GPa	P _o ', GPa	P _{MP} ', GPa	P _{GT} ' GPA	P _{GF} ' GPa
1	<i>p</i> -Cd _{1-x} Mn _x GeAs ₂	0.06	0.6	0.1	0.75	0.35	0.8	0.5
2	p-Cd _{1-x} Mn _x GeAs ₂	0.18	3.1	2.0	3.8	2.55	2.5	1.1

На основе модели гетерофазная структура эффективная среда [18] и теории протекания рассчитана динамика изменения объемной доли исходной фазы C_1 от давления. При P_b - C_1 =1 и C_2 =0, и при P_e - C_1 =0 и C_2 =1. Здесь C_1 и C_2 – относительные

- [1]. Медведкин Г.А., Ишибаши Т., Ниши Т., Сато К. // ФТП, 2001,35, 3, с.342 (2001).
- [2]. H.Ohno, F.Matsukura, Y.Ohno, JAP Intern. 5(2002) 4-13.
- [3]. T. Dietl, Semicond. Sci. Te-hnol. 17(2002) 377-392.

объемы фаз $C_1=V_1/(V_1+V_2)$, $C_2=V_2/(V_1+V_2)$, $C_1+C_2=1$, где V_1 – объем исходной фазы, V_2 – объем образующейся фазы. На рис. 4 (a,b) представлена зависимость объемной доли исходной фазы C_1 от давления при подъеме и сбросе давления для образцов p-Cd_{1-x}Mn_xGeAs₂ с различным содержанием марганца.

Рис.4 а) Зависимость объемной доли исходной фазы С₁ от давления при подъеме и сбросе давления для Cd_{1-x}Mn_xGeAs₂ (образец №1). b) Зависимость объемной доли исходной фазы С₁ от давления при подъеме и сбросе давления для Cd_{1-x}Mn_xGeAs₂ (образец №2).

4. ВЫВОДЫ.

В заключении отметим, что в магнитных полупроводниках $Cd_{1x}Mn_xGeAs_2$ (x=0.06 и x=0.08) и $Cd_{1-x}Cr_xGeAs_2$ (x=0.01) обнаружены структурные фазовые переходы, определены характеристические точки, параметры фазового превращения и рассчитана динамика изменения фазового состава с давлением.

основе полученных экспериментальных Ha результатов можно сделать вывод, что p-Cd_{1-x}Mn_xGeAs₂ является удобным материалом для создания резистивных полупроводниковых датчиков давления. Изменение процентного содержания марганца в Cd_{1-x}Mn_xGeAs₂ позволяет регулировать положение точки фазового перехода (реперной точки) на шкале высоких давлений в довольно широких пределах, в нашем случае от P=0.9±0.1 GPa до P=4.5±0.2 GPa.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (Проект №05–02–16608) и проекта РАН "Физика и механика сильно сжатого вещества и проблем внутреннего строения Земли и планет"

[4]. Р.В.Демин, Л.И.Королев, С.Ф.Маренкин, С.Т.Михайлов, Т.Г.Аминов, Г.Г.Шабунина, Р.Шимчак, М.Баран // Сб. тр. XIX Межд.школы-семинара, "Новые магнитные материалы микроэлектроники", Москва, с.342 (2004).

- [5]. L.G.Khvostantsev, V.A.Sidorov, Phys. Status Solidi A64, 379 (1991).
- [6]. А.Ю.Моллаев, Р.К.Арсланов, Л.А. Сайпулаева, С.Ф.Габибов, С.Ф.Маренкин, ФТВД 11, №4,61 (2001).
- [7]. Pieramani G.I., Block I.D. Calibration of the Pressure Dependence the X Ruby Fluorescent Cline to 195 kBar // J.Appl.Phys. 1973. V. 44. № 12. P. 5377.
- [8]. Н.Мотт, Э.Дэвис, Электронные процессы в некристаллических веществах, Т.1,Мир, Москва (1982).
- [9]. Н.А.Николаев, Л.Г.Хвостанцев, В.Е.Зиновьев, А.А.Старостин, ЖЭТФ 91, №3(9), 1001 (1986).
- [10]. А.Ю.Моллаев, И.К.Камилов, Р.К.Арсланов, С.Ф.Габибов, ФТВД 12, №4, 25 (2002).

- [11]. А.Ю.Моллаев, Л.А.Сайпулаева, Ю.М.Иванов, ФТВД 13, №1, 43 (2003).
- [12]. Е.Ю.Тонков, Фазовые превращения соединений при высоком давлении. М.: Металлургия, 1988.
- [13]. А.Л.Ройтбурд, УФН 113, 69 (1974).
- [14]. А.Л.Ройтбурд, ФТТ 25, 33 (1983).
- [15]. А.Л.Ройтбурд, ФТТ 26, 2025 (1984).
- [16]. В.Н.Козлов, Г.Р.Умаров, А.А.Фирсанов, ФТВД вып. 23, 9 (1986).
- [17]. М.И.Даунов, А.Б.Магомедов, А.Ю.Моллаев, С.М.Салихов, Л.А.Сайпулаева, Сверхтвердые материалы №3,3 (1992).
- [18]. М.И.Даунов, М.С.Буттаев, А.Б.Магомедов, СФХТ 5, 73 (1992).
- [19]. А.Ю.Моллаев, Р.К.Арсланов, Р.И.Ахмедов, Л.А.Сайпулаева, ФТВД 4, № 3-4, 66 (1994).