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    We present a theory of optical absorption for the renormalized band structure of semiconductors under irradiation by an intense 
off-resonant infrared laser. It is shown that there appears an induced absorption band below the original band gap, in agreement with 
a recent experiment. We also present some results on the coherent control of quantum dynamics using external time-dependent fields.  
   
 
1. INTRODUCTION 

The coherent manipulation of electron wave functions 
and quantum dynamics  of matter such as molecules, 
solids or nano structures is one of the central issues not 
only in the physics but also in the field of advanced 
technology. One of the motivation is, of course, the 
potential application to the future devices based on the 
principle of quantum mechanics. For example, the 
development of techniques to manipulate assemblies of 
two-level systems (qubits) is a crucial requirement in the 
architecture of quantum computers. The attempt to control 
chemical reactions by using intense electromagnetic fields 
is another topic in this connection. Theoretically, the 
study of quantum states and dynamics of externally 
driven systems poses a new class of problems. In the 
present paper, we will review recent progress in the study 
of coherent control of electronic states of matter and their 
dynamics both from theoretical and experimental side.  
 
2.  BAND GAP RENORMALIZATION OF 

SEMICONDUCTORS BY INFRARED LASER 
Recently, it was reported that the apparent band gap 

of GaAs crystal is reduced to a remarkable extent under 
irradiation of intense off-resonant infrared laser[1]. This is 

a coherent phenomenon in the sense that it does not 
accompany with any real excitation of carriers. It is a 
strongly nonlinear optical process, well beyond a 
perturbation theory. From application side, this finding 
means a possibility to construct efficient nonlinear optical 
devices which have a very short response time.  

This effect is related with the so-called dynamic 
localization of carriers under oscillating electric field[2]. 
However, it should be noted that the dynamical 
localization only results in the shrinking of band width, 
and the apparent band gap would expand in contradiction 
with experimental observation. In order to explain the 
observed data, we must take into account the fact that the 
band gap of semiconductors is determined by the 
intratomic and interatomic exchange (transfer energy). In 
other words, we must devise a theoretical framework of 
band calculation that takes account of the influence of the 
laser field from the beginning. 

Here, we present a theory of laser-induced coherent 
band renormalization, and show a result of calculated 
optical absorption spectrum. First we show results for a 
one-dimensional model. The one-dimensional model is 
best suited to see the essential features of the problem. 

The Hamiltonian is given by 
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where n,1  and n, 2  are s-p hybridized orbitals at 
n-site, which are defined as linear combinations of the s 
and p orbitals at n-site, n,s  and n, p , as 
 

 n,1 = n, s − n, p( ) 2 ,          (4) 
 n,2 = n, s + n, p( ) 2           (5) 

 
The intraatomic transfer energy t1 is then given by 

t1 = ε p − εs( ) 2 with the energies of the s and p orbitals, 
εs and ε p , and t2  is the interatomic transfer 
energy. E(t)  is  the electric field of the infrared laser 
which is oscillating sinusoidally, and α  and β  are the 
parameters for the intraatomic and interatomic Stark 
effect. In accordance with the dynamical Stark effect, the 
energy levels of each atom oscillate up and down as 
shown in Fig. 1.  

 
Fig. 1 

 
  The eigenvalues of the unperturbed Hamiltonian H0  
are given by  

 Ek
± = ± t1

2 + t2
2 + 2t1t2 cosak ,       (6) 

 
where a  is the lattice constant and k  is the wave 
vector. There appear a conduction band and a valence 
band with the band gap energy given by 2 | t2 − t1 | . 
The interaction Hamiltonian is written as 
      HI (t) = −eE(t) αx / 2 + βX( )         (7) 
where x  and X  are the intraatomic and interatomic 
displacement operators given by 
 

x = n, 2 n,2 − n,1 n,1( )
n

∑
X = n n,1 n,1 + n, 2 n,2( )

n
∑

         (8) 

respectively. Note that this Hamiltonian violates the 
translational symmetry. It can be recovered by applying 
the time-dependent gauge transformation with the unitary 
operator, 

U(t) = exp −ieA(t ) αx / 2 + βX( ){ }       (9) 
where A(t ) is a gauge potential,  

A(t ) ≡ E(τ)dτ
t

∫ .             (10) 

The optical absorption spectrum around the band gap 
energy is  measured by  the near infrared or visible 
light. The interaction with this probe light can be treated 
by the lowest order perturbation theory. However, we 
cannot rely upon Fermi’s golden rule to calculate the 
transition probability, because the system is under time 
dependent strong perturbation and is far from the thermal 
equilibrium. In order to overcome this difficulty, we have 

developed a time-dependent generating function 
formalism. The time-averaged absorption spectrum I(Ω)  
for the probe photon with energy Ω  is then given in the 
form 

 I(Ω) = lim
TP → ∞

1
TP

dT
0

TP

∫ dt
−∞

+∞

∫ G(T,t )e−iΩ t       (11) 

 
where G(T, t)  is a double-time Green’s function 
(generating function). In order to calculate G(T, t)  
actually,  Bloch’s theorem in the space domain coupled 
with  Floquet’s theorem in the time domain works 
efficiently.  

In Fig.2, the calculated absorption spectrum is shown. 
The thin dotted line corresponds to the interband 
absorption for the unperturbed system. The bold dotted 
line represents the absorption spectrum under the 
irradiation of the infrared laser. The absorption spectrum 
is decomposed into contributions from the transitions with 
the change of Floquet indices n as shown in Fig.2. As can 
be seen from the figure, the intense laser field gives rise to 
two effects, namely, the shrinkage of the conduction band 
and the emergence of a new absorption band below the 
band edge. The latter originates from the transition 
between the Floquet states with different indices. In other 
words, it comes from the interband transition 
accompanying the simultaneous absorption of the photons 
of the infrared laser. This additional structure corresponds 
to the apparent shrinkage of the band gap. Note that this is 
a bulk effect so that the transmission of light below the 
edge region is strongly reduced as observed in the 
experiment[1]. 
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Fig.2 

 
The model has been extended to the 

three-dimensional system that corresponds to the 
electronic states of realistic semiconductors such as Si and 
GaAs. The valence band and the conduction band have 
been constructed by a tight-binding model with basis 
functions 2s and 2p. The Bloch states are described by the 
linear combinations of the hybridized orbitals as usual. 
The effect of the intense infrared laser is taken into 
account as an oscillation electric field as in the 
one-dimensional model. The gauge transformation is 
again applied for three-dimensional system that recovers 
the apparent translational symmetry of the crystal. The 
interaction with the probe light is treated by the lowest 
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order of perturbation.  
In Fig.3, the unpertubed band structure of GaAs is 

shown. The parameter values are chosen from 
literatures[3]. It is well known that the tight binding 
calculation generally gives the band gap energy larger 
than that of real materials, if one adopts the raw values of 
atomic data. Here we show the calculated results without 
any renormalization. In Fig.4, we show a result of the 
induced transmission change at the band gap calculated 
for parameters corresponding to GaAs. In the inset, the 
experimental data[1] for the differential transmission for 
GaAs is shown.  

As shown here, there appears negative gain (i.e. 
induced absorption)  below the band gap energy in the 
presence of intense infrared laser. Likewise, there occurs 
an increase of transmission above the band gap. The 
calculated line shapes of the differential transmission well 
reproduce the experimental features. The effect of the 
infrared laser has thus two distinct effects: the one is the 
reduction of the band width and the other is the 
appearance of induced absorption below the band gap. 
We may call the electronic state that is strongly mixed 
with photons (oscillating fields) a dressed semiconductor. 

 

 
Fig.3 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 

 
3. COHERENT CONTROL OF QUANTUM 

DYNAMICS 
As noted above, the band gap renormalization is 

closely related with the so called dynamic localization of 
electrons. This is the phenomenon predicted theoretically 
by Dunlap and Kenkre[2], who pointed out that the 
quantum migration of an electron in a one-dimensional 
lattice may be suppressed completely by applying 
oscillatory electric field with a suitable ratio of the 
frequency and amplitude. On the other hand, it has been 
shown by Grossmann et al.[4] that the quantum tunneling 
in a two-level system is suppressed in the oscillatory field 
with a suitable parameter values. This is called the 

coherent destruction of tunneling (CDT). One of the  
present author[5] pointed out that the CDT can be 
regarded as a special case of destructive interference 
between the transition paths of a two-level system, which 
can be understood clearly by use of the Landau-Zener 
theory [6,7] of nonadiabatic transitions. The dynamic 
localization and the CDT may be classified into a class of 
time-dependent problems that can be solved exactly or 
quasi exactly.  

The recent success in the observation of a coherent 
oscillation of an electron in double quantum dots (QDs) 
of semiconductors[8] enhanced the motivation to utilize 
the QDs as elements of new information processing 
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devices (i.e. qubits) based on the principle of quantum 
mechanics. Similar phenomena have been reported earlier 
for Josephson qubits[9]. The establishment of the 
techniques of coherent manipulation of electrons is an 
essential requirement for the development of such 
quantum devices.  

So far, the experimental realization of coherent 
manipulation of the electrons utilized the Rabi oscillation 
induced by the sudden changes of the external fields. For 
example, in order to transfer an electron fron the left dot 
to the right dot, one applies a rectangular gate pulse that 
switches the two level system between the resonant and 
off resonant condition suddenly. However, this requires a 
very high frequency components in the gate voltage fields, 
which may pose some difficulty in the future application. 

Recently Saito and one of the authors[10] proposed a 
novel method of coherent manipulation that utilizes the 
quantum interference in the nonadiabatic transitions. 
According to this technique, one needs only smoothly 
varying gate pulses without sudden change. Let us 
consider electronic states in a simple double QDs, the 
Hamiltonian of which is given by 

                                                            
( )12212211)()( 21 +++= γεε ttH      (12) 

 
where 1 and 2 describe the state in which the 
electron occupies a discrete level of the left and the right 
dot, respectively. The tunneling matrix element is given 
by γ . Without loss of generality we can assume that 

only the energy level of the state 1 changes. Let us 
assume that the energy level change as shown in Fig.5, 
namely the diabatic state 1 crosses 2  twice from 

0=t to ftt = .If the magnitude of the tunneling 
parameter is amall enough as is usually the case, the 
transition is localized around the two level-crossings. In 
such a situation, the analysis by the tranfer matrix [5] is 
useful. The whole temporal evolution can be decomposed 
into a succession of the nonadiabatic transitions at the 
crossings and the free propagation in between. The 
transition probability q  at each crossing is given by the 
cerebrated Landau-Zener formula [6,7].   

In order to attain the maximum controllability, we 
adjust the speed of the energy change at crossing to give 

2/1=q .                 

 
Fig. 5 

 
Then it can be shown that the transfer matrix for the 

two level system after the double crossing is given by 
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where φ2+=Θ S  in which S  is the dynamical 
phase proportional to the erea shown in Fig.5, and φ  is 
the Stokes phase. The above formula means that we can 
obtain arbitrary unitary gate simply by adjusting S .  
 

 
Fig. 6 

 
In Fig.6, the temporal profile of the existence 

probability of the electron in the left QD (solid line) and 
the right QD (dashed line) is shown for the value 

πφ 32 =+S , which corresponds to the complete 
transfer. As shown here, the agreement of the analytical 
formula and the numerical result is perfect. In the same 
way, we can manipulate an electron and transfer it from 
QD to QD for an array of QDs.
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