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A quasiclassical theory of nanosize point contacts (PC) between two ferromagnets is developed. A maximum available 

magnetoresistance in PC is calculated for ballistic and diffusive transport at the area of a contact. In the ballistic regime, the 
magnetoresistance in excess of few hundreds percents is obtained for the iron-group ferromagnets. The regime of quantized 
conductance through the magnetic nanocontact is considered. It is shown that magnetoresistance is tremendously enhanced at small 
number of open conductance channels. The quantum spin valve realization is discussed in detail, and recent observations of huge (up 
to 100’000%) magnetoresistance in the electrodeposited nickel nanocontacts are discussed in the framework of the developed theory. 

 
 
1. INTRODUCTION 

In recent experimental studies of Ni-Ni and Co-Co 
point contacts (PC) a surprisingly high negative 
magnetoresistance in excess of 200% has been discovered 
[1-3]. The set up of the experiments was typical for 
observation of giant magnetoresistance (GMR), the effect 
observed earlier in hybrid systems involving 
ferromagnetic and normal metals [4,5]. However, for the 
multilayer structures a typical change of the resistance 
reaches 10-50%, which is considerably lower than the 
values reported in Refs. [1,2]. Further development of the 
nanocontacts fabrication techniques raised the above 
values till 70 000%-100 000% [6-10]. The authors claim 
that they observed ballistic magnetoresistance (BMR), i.e. 
the magnetoresistance at ballistic (collisionless) electronic 
transport at the area and vicinity of the nanocontact.  

A negative magnetoresistance can be due to 
scattering of conduction carriers by a domain wall (DW). 
According to a general quantum-mechanical prescription 
any inhomogeneity in the potential landscape results in 
reflection of quasiparticle wave function, which evokes an 
additional electric resistance. This effect has been 
considered for a free-standing domain wall in a number of 
works [11-14], and low values of MR were obtained 
assuming that the widths of the DW is large, typically 
150-1000 Å. The fact that the enhancement of impurity 
scattering in a sharp DW may give large MR was utilized 
in the perturbation theory of Ref. [2] to explain the 
anomalously large values of MR in the experiments on 
the point contacts [1,2]. In this paper we review a 
nonperturbative theory of electron scattering by the 
constrained domain wall [15-17] aiming to demonstrate 
that DW scattering enables to provide huge magnitudes of 

negative magnetoresistance observed in the recent point 
contact experiments. 
 
2.  MODEL OF THE POINT CONTACT AND ITS 

SOLUTION 
2.1Effectively sharp domain wall 

The diminishing of the width of DW when decreasing 
the size of the constriction between two oppositely 
magnetized domains was proposed by Bruno [18]. In his 
model the DW width becomes comparable with PC 
length, and the magnetization rotates almost entirely 
inside the constriction. This conclusion holds until the 
diameter of PC is smaller than its actual length. With 
further increase of the constriction size (diameter) one 
may expect that the wall will bend outside of PC. This 
behavior has been clearly demonstrated in recent 
micromagnetic simulations of domain walls in magnetic 
nanocontacts [19,20]. In their calculations for two bulk 
ferromagnetic rods connected by a nanosize thread 
Savchenko et al. [19] demonstrated, that the domain wall 
is bulged out the constriction on the distance of its size 
(Figs. 3a-5a of [19]). They also checked that with 
increasing of material anisotropy the domain wall shrinks 
towards the connecting thread (Fig. 5 in Ref. [19]). 
Molyneux et al. [20] analyzed in detail nanocontacts 
between large-area thin films. They concluded, that the 
width of the constrained DW is about 2a+d, where d is 
the length and a is the width of the connecting channel, 
respectively. In their calculations the magnetization 
relaxes almost isotropically outside the constriction. 
Finally, from their numerical calculations the authors of 
Ref. [20] concluded that 3D domain wall is more 
localized compared with the 2D (thin-film) one. 
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The micromagnetic calculation results can be easily 
understood using simple energy considerations. From the 
symmetry of the problem it is obvious that in a free-
standing, infinite area DW the exchange energy relaxes 
into the chain of magnetic moments till the total 
anisotropy energy of the chain equals the loss of the 
exchange energy (the classic 1D Landau-Lifshitz 
solution). In the 2D, thin-film case, the portion of the 
exchange energy, which did not relax inside of 
constriction, relaxes into the 2D plane outside of the neck. 
In this 2D-case, two half-circles (we use the conclusion of 
Ref. [20] about the isotropic relaxation of the 
magnetization) at mouths of the constriction 
accommodate the number of magnetic moments in the 1D 
domain wall chain, minus the number of the moments 
inside the constriction. In the case of 3D nanocontact, 
approximately the same amount of magnetic moments has 
to be accommodated by two semi-spheres at the mouths 
of the neck. It is clear, that the spatial extent of the 
domain wall will eventually decrease upon increasing the 
dimensionality of the magnetization relaxation space 
(chain -> area -> volume).  

Coey et al. [21,22] have drawn attention to the fact, 
that in nanosize constrictions the continuum 
approximation, used in micromagnetic simulations, is no 
longer valid. They have analyzed DW in nanocontacts 
calculating explicitly lattice sums over the magnetic 
moments in the constriction and the adjacent space. The 
main conclusions are as follows: discrepancy between 
results of the continuum and the discrete approaches 
become marked as the characteristic dimensions fall 
below 10 inter-atomic spacings; it is possible to have very 
narrow domain walls with a width determined by the 
effective length of the constriction, the latter one can be 
as little as a few inter-atomic spacings.  

Another necessary condition for realization of the 
sharp DW is conservation of the electron spin orientation 
when crossing the domain wall. The electron spin 
conserves if the DW width is shorter than the length, at 
which the electron spin quantization axis adjusts varying 
direction of the local exchange field. If we assume the 
DW width 5 nm and the Fermi velocity vF~105 m/s, then 
the time-of-flight is about 5×10-14 s - too short compared 
with Zeeman or spin-relaxation time. At this condition the 
transmission process looks like transmission through the 
abrupt DW, and the description of the electron transport 
through PC with boundary conditions at PC interface is 
valid. 

 
1.1 2.2.Formalization of the model and direction of solution 

We believe that extremely large magnetoresistance can be 
obtained because of the strong spin-dependent reflection 
of carriers from the effectively sharp DW in the PC area. 
It is realized in ferromagnetic metals where there is large 
exchange splitting of conduction band (0.3-1.0 eV). 
Mapped onto the parabolic conduction band structure the 
exchange splitting results in non-equivalent values of the 
spin-subband Fermi momenta, kF↑ and kF↓ (Ref. [23] gives 
kF↑ = 1.1Å-1 and kF↓ = 0.42Å-1 for iron).  

At the ferromagnetic (F) alignment of 
magnetizations in the contacting ferromagnetic metals 
there is no domain wall in the constriction, and the current 
flows through PC independently in each conduction spin-

subband. Then, the resistance of PC is actually the 
Sharvin resistance [24] of spin-channels connected in 
parallel. At the antiferromagnetic (AF) alignment of 
magnetizations the additional resistance appears, which is 
associated with reflection of electrons from the potential 
barrier created by the domain wall. In fact, at AF-
alignment the spin-subband assignment in one of the 
magnetic domains is reversed with respect to the another 
one, and the current flowing from, say, majority (larger 
Fermi momentum) subband of one bank of the contact has 
to be accommodated by the minority (smaller Fermi 
momentum) subband of the another bank. Then, in terms 
of quantum mechanics, the incident electron waves will 
be partially reflected because of the Fermi momenta 
mismatch of majority and minority subbands (kF↑>kF↓). 
However, the partial reflection of electrons is not the sole 
reason for the enhanced resistance at the AF-alignment. 
When the angle of incidence becomes large enough (it 
depends on the ratio of spin-subband Fermi-momenta, kF↑ 
and kF↓) the minority subband can not further accept the 
momentum transferred from the opposite side of the PC, 
which is majority subband with the same spin projection. 
As a result, only a narrow incidence angles cone (for 
kF↑>>kF↓ as in the example given above) around the 
normal direction to the interface is responsible for the 
charge transport across the PC. Electrons with more 
inclined trajectories are completely reflected. Thus, the 
partial transmission at the steep incidence, and the total 
reflection at slanted incidence provide high boundary 
resistance of PC at AF alignment of magnetizations. 

The PC model we consider to realize the physics 
described above is the circular hole of the radius a made 
in a membrane. The membrane divides the space on two 
half-spaces, occupied by the single-domain ferromagnetic 
metals. It is impenetrable for the quasiparticles carrying a 
current, and the connecting channel is assumed to be 
ballistic (shorter than the mean free path). The z-axis of a 
coordinate system is chosen perpendicular to the 
membrane plane.  

The electron motion on both sides of the contact can 
be described by the equations for quasiclassical (QC) 
Green functions derived by Zaitsev [25]. They are, in fact, 
equivalent to the Boltzmann equations in the τ-
approximation. The equations are supplied by boundary 
conditions [25] which take into account explicitly the 
quantum mechanical conservation laws for momentum 
and energy. For the cylindrical geometry of the model the 
system of kinetic equations can be solved exactly in the 
mixed, real space in the z-direction and the Fourier-
transform in the contact plane, representation [15]. The 
electric current density is expressed via the antisymmetric 
QC Green function, and the net current I through the hole 
in a membrane is calculated integrating the current 
density over the area of the contact. As far as the currents 
for the F- and AF alignments are obtained, the 
magnetoresistance can be found from the definition: 
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where IF (σF) stands for the current (conductance) at F 
alignment of magnetizations of contacting ferromagnets, 
and IAF (σAF) is for the AF alignment of magnetizations. 
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3. MAGNETORESISTANCE AT CLASSICAL 

(NON-QUANTIZED) CONDUCTION 
To simplify the general analysis of the solution we 

use the step-like shape for the potential barrier created by 
DW. The approximation of DW profile by the abrupt 
potential gives maximum available magnetoresistance for 
a particular choice of other physical parameters [15]. For 
the purely ballistic transport [a/l↑->0, where l↑ (l↓) is the 
majority (minority) electrons mean free path] the 
magnetoresistance can be evaluated analytically:  
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If δ=1, then MR=0, i.e. the magnetoresistance vanishes in 
the contact of non-magnetic metals. For the set of δ values 
we obtain from (2): δ=0.5 MR=238%; δ=0.4 MR=455%; 
δ=0.33 MR=780%; δ=0.3 MR=1012%. 

Let us recall here the experimental data on 
magnetoresistance of magnetic PC by García et al. Ni-Ni 
PC showed maximal MR=280% [1], Co-Co PC showed 
maximal MR=230% [2]. To obtain the MR values of 
280% (Ni) and 230% (Co) we have to use the values 
δ(Ni)=0.47 and δ(Co)=0.5. These values are in the range 
of the values, obtained experimentally from the single 
photon threshold photoemission [26] and from 
ferromagnet/superconductor point contact spectroscopy 
[27,28]. 

For the arbitrary mean free path MR can be calculated 
numerically. The results for the magnetoresistance (1) as 
a function of the contact radius are shown in Fig. 1.  
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Fig. 1. Dependence of magnetoresistance on the PC 

radius. 
 
Calculation show that magnetoresistance is enhanced 
when conductance approaches ballistic regime (small 
contact radius a). 
 

3. CONDUCTANCE QUANTIZATION AND 
MAGNETORESISTANCE IN MAGNETIC 
POINT CONTACTS 
Since experiments with two-dimensional electron gas 

in a semiconductor it is demonstrated that electric 
conduction is quantized, and elementary conductance 
quantum is equal to 2e2/h. The factor 2 is attributed to the 
two-fold spin degeneracy of conduction electron states. 
Recently, sharp conductance quantization steps have been 
observed in nanosize point contacts of ferromagnetic 
metals at room temperature [29-32]. It is possible, 
because phonon- and magnon-assisted relaxation 
processes are quenched due to a large, ~1 eV, exchange 
splitting of the conduction band. In addition, Oshima and 
Miyano [30] found a clear indication of the odd-valued 
number N of open conductance channels (σ = N(e2/h)) in 
nickel point contacts from room temperature up to 770K. 
Ono et al [32] presented the evidence of switching from 
2e2/h conductance quantum to e2/h quantum at room 
temperature in the nickel nanocontacts of another 
morphology. Obviously, the change of conductance 
quantum from 2e2/h to e2/h is a result of lifting-off the 
spin degeneracy of the conduction band by exchange field 
acting from the ferromagnetically ordered spins.  

We applied our model described above to the case, 
when conductance of the constriction is quantized 
[16,17]. The generalization on the case of conductance 
quantization means proper re-definition of the 
transmission coefficient D in the formulas for the 
conductance. We assume that the connecting channel has 
the cylindrical shape of arbitrary (but shorter than the 
mean free path) length d. The channel plays the role of a 
filter, which selects from the continuous domain of 
quasiparticle incidence angles only those, which satisfy 
the energy and momentum conservation laws, and 
conditions for quantization of the transverse motion of an 
electron in the channel. As the diameter of the channel is 
assumed to be very small, we may use the ballistic-limit 
versions of our formulas to calculate the conductance of 
the channel. For the numerical calculations we used the 
step-like potential barrier, as before, and the sloping 
potential landscape to approximate the constrained 
domain wall profile [18]. The transmission coefficient D 
for the sloping potential has been obtained from the exact 
solution of the Schroedinger equation for the motion of 
electron in the potential landscape of DW linearly 
changing inside of the constriction of the length d. The 
necessary condition for the model is conservation of the 
electron spin orientation when crossing the domain wall. 
The electron spin conserves if the DW width is shorter 
than the length, at which the electron spin quantization 
axis adjusts varying direction of the local exchange field. 
If we assume the DW width 5 nm and the Fermi velocity 
vF~105 m/s, then the time-of-flight is about 5×10-14 s – too 
short compared with the Zeeman or spin-relaxation time. 
The results of calculations are presented in Fig. 2. 
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Fig. 2. The dependence of conductance (a), and MR (b) 

on the cross-sectional size of the neck a. Panels 
(c) and (d) show dependencies of MR on the 
number of the open conductance channels at the 
F-alignment of the magnetizations. The 
maximal MR=3953% and MR=1017% for the 
step-like potential and MR=1612% for the 
sloping potential at σ = 4(e2/h) are not shown. 
 

The main conclusion that follows from Fig. 2 is that 
MR experience huge enhancement at small numbers of 
open conductance channels. For very moderate 
polarization of the conduction bans MR may reach few 
thousand percents. In the range of the PC size labeled by 
QSV in Fig. 2a the AF-alignment conductance is zero. 
Then, according to Eq. (1) MR is infinite. In reality there 
are spin-reversal processes which open small but finite 
conductance at AF-alignment of magnetization. This 
introduces natural upper bound preventing infinite growth 
of magnetoresistance. It is worthy to note, that 
conductance quantization introduces giant reproducible 
fluctuations of conductance as it can be seen from Figs. 
2b, 2c and 2d. We have put our calculations on the 
experimental data by N. García et al. The results are 
shown in Fig. 3. 

It can be seen that some points do not fit correct 
abscissa, however, our calculation has been made for the 
cylindrical cross-section of the connecting channel. This 
requirement cannot be fulfilled in a contact which is 
fabricated by a mechanical contact of a tip with a flat 
surface. If we assume asymmetric cross-section, then the 
points of magnetoresistance can appear at shifted values 
of quantized conductance at F-alignments (abscissa). 
Indeed, our calculations show that for the rectangular 
cross-section of the bridge the location of the 
magnetoresistance points depends on the aspect ratio of 
the cross-section (see Fig. 4 and Fig. 5). 

From the model calculation above it can be concluded 
that deformation of the tip in the contacting process can 
easily shift the magnetoresistance points along the 
abscissa of the graph thus giving an additional degree of 
freedom to improve agreement between the theory and the 

experiment. However, we do not have data on the shape of 
the contacts to make particular calculations. 
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Fig. 3. Experimental data and calculated points 

(δ(Ni)=0.64 and δ(Co)=0.57) for MR put on the 
same graph. The experimental data are taken from 
Ref. [6]. 
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Fig. 4. The dependence of conductance (a), and MR (b) on 
the cross-sectional size of the neck a. Panels (c) and 
(d) show dependencies of MR on the number of the 
open conductance channels at the F-alignment of the 
magnetizations.  

 
5. CONCLUSION 

In conclusion, we have investigated theoretically the 
giant magnetoresistance in nanosize magnetic point 
contacts made of ferromagnetic metal. Our calculations 
show that the magnitude of magnetoresistance is 
dramatically enhanced when the ballistic regime of 
conductance is realized. The ballistic magnetoresistance 
(BMR) in the quasiclassical regime of conductance can 
easily reach few hundred percents at experimentally 
approved polarizations of the ferromagnet conduction 
band. Next, the regime of quantized conductance through 
the point contact is considered, and the conductance is 



 405

calculated for the ferromagnetic (F) and antiferromagnetic 
(AF) alignments of magnetizations in contacting 
ferromagnets. Calculations show that BMR of the 
quantum point contact experiences huge enhancement at 
first few open conduction channels for the F-alignment of 
magnetizations. 
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Fig. 5. The same as in Fig. 4, but for ε = 1.5. The 

maximal MR=758% for the step-like potential 
and MR=322% for the sloping potential at are not 
shown. 

At certain range of the contact area the BMR is 
infinitely large as far as the electron-spin is conserved 

upon transmission through the point contact. We called 
this regime of the magnetic point contact operation as 
quantum spin-valve (QSV). In a more realistic model 
BMR has to be limited from above by the conduction-
electron spin-reversal process, and can reach tens of 
thousand percents. It is very likely, that recent 
observations of huge, 3 000% to 100 000% BMR in 
nickel point contacts have origin in conductance 
quantization and realization of the QSV regime. This 
huge magnetoresistance property survives for every shape 
of the nanocontact and disorder, provided that: (1) 
conductance at the ferromagnetic alignment is quantized 
(steps are not destroyed); (2) the domain wall in the 
constriction is effectively sharp (the conduction electron 
spin-flip rate is slow). Very recent observations [33] of 
quantized conductance at room temperature and 
magnetoresistance, which experience giant fluctuations as 
a function of quantized conductance, give further 
evidence of the physical picture that we described in this 
paper. 
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