

Bakı, Azərbaycan

Baku, Azerbaijan

Баку, Азербайджан

РЕНТГЕНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЕ АНИОННОГО ЗАМЕЩЕНИЯ НА ФАЗООБРАЗОВАНИЕ, МЕХАНИЗМ И ТЕМПЕРАТУРЫ ФАЗОВЫХ ПРЕВРАЩЕНИЙ В CuAgSe

АСАДОВ Ю. Г., ГАМИДОВА С.С., БАЙКУЛОВ Р.Б.

Институт физики Национальной Академии Наук Азербайджана AZ1143, пр. Гусейн Джавида 33, Баку, Азербайджан e-mail: <u>isfansevda84@yahoo.com</u> tel: (99412)4392135

Высокотемпературным рентгендифрактометрическим методом исследовались структурные превращения в $CuAgSe_{0.5}(S,Te)_{0.5}$ и было показано, что при комнатной температуре $CuAgSe_{0.5}S_{0.5}$ является двухфазным. Одна фаза кристаллизуется в моноклинной структуре $Cu_{1.96}S$, а другая в орторомбической структуре CuAgSe: обе фазы при 540K превращаются единую ГЦК фазу. Кристаллы $CuAgSe_{0.5}Te_{0.5}$ при комнатной температуре трехфазные, одна фаза кристаллизуется в орторомбической структуре Cu_2 Te, а другая - в орторомбической структуре CuAgSe, третья их метастабильно существующие кубические фазы. Обе орторомбические фазы при 444K превращаются в кубическую фазу.

В [1] показано, что CuAgSe кристаллизуется в сингонии тетрагональной с параметрами кристаллической решетки, a=4.083Å, c=6.30Å с двумя молекулами в элементарной ячейке. В работе [2] что CuAgSe кристаллизуется установлено, В орторомбической сингонии с параметрами решетки, a=4.105Å, в=20.35Å, с=6.31Å с десятью молекулами в решетке. Наличие псевдопериода вдоль оси в кратного пяти, который не был обнаружен в [1] делает данную решетку псевдотетрагональной, т.е. в=20.35=5x4.08.

По данным указанных работ в структуре CuAgSe атомы Ag находятся в плоскостях, перпендикулярных оси <u>с</u>. Около каждого из них располагается 4 Ag на расстоянии 2.96Å и 6 Se на расстояниях : 2.67Å (4 Se), 3.59Å (1 Se) и 3.64Å (1 Se). Атомы Se образуют вытянутые тетраэдры, в которых находятся атомы Cu. Расстояние Se - Se = 3.03 Å, расстояния Cu - Se = 2.06 - 2.50 Å. Наименьшее расстояние Cu - Ag = 2.98 Å.

В работе [3] детально исследовались структурные превращения в CuAgSe и показано, что орторомбическая фаза при 504К превращается в ГЦК фазу. Превращение обратимое и происходит по типу монокристалл-монокристалл.

В данной работе рассматриваются полиморфные превращения в кристаллах $CuAgSe_{0.5}(S,Te)_{0.5}$. Условия синтеза и выращивание монокристаллов описано в работе[3].

Высокотемпературные дифрактометрические исследования проводились на дифрактометре ДРОН-ЗМ с приставкой URVT-2000, обеспечивающей вакуум 10^{-2} Па. Угловое разрешение записи составляло ~ 1°. Дифрактограммы записывались непрерывно, углы дифракции определялись методом пиков интенсивности. В экспериментах ошибка определения углов отражений не превышала $\Delta \theta = \pm 0.02^\circ$.

I. CuAgSe_{0.5}S_{0.5}.

При 293К, от произвольно ориентированного кристалла Cu Ag Se_{0.5}S_{0.5}, размерами 1x5x5 мм, в интервале углов $10^{\circ} \le 20 \le 100^{\circ}$, зафиксировано 16 дифракционных отражений. Индицирование их говорит о существовании в образце двух фаз. Одна из них, по размерам элементарной ячейки, идентична низкотемпературной моноклинной Cu_{1.96}S [4], другая - низкотемпературной орторомбической CuAgSe [2].

Как видно из таблицы 1, все 16 зафиксированных отражений индуцируются на основе параметров решетки моноклинной Cu_{1.96}S, из них 8 также индуцируются на основе параметров орторомбической решетки CuAgSe. После записи дифрактограммы при комнатной температуре, не нарушая ориентации образца, включали печь и через каждые 100К проводили контрольные записи.

Таблица 1. Расчет дифрактограммы Cu Ag Se_{0.5}S_{0.5}

No No	θ	I/Io	dÅ	Cu	Cultors		CuAgSe		Параметры
51_51_	v	1 / 10	•зксп., 1	Cu	1.960	eu 1550		1 зксп., 1	кристаллической
				d _{расч} , Å	hkl	d _{расч} , Å	hkl		решетки, Å
1	18° 00′	30	2.897	2.898	243	2.890	150	293	<u>Cu_{1.96}S</u>
2	19° 30′	80	2.682	2.690	1000	2.681	042		моноклинная
3	20° 24′	100	2.568	2.569	044				a = 26.897
4	21° 36′	50	2.432	2.437	162				в = 15.515
5	23° 30′	70	2.245	2.245	942				c = 13.585
6	25° 06′	40	2.111	2.111	326				$\beta = 90.13^{\circ}$
7	25° 36′	50	2.072	2.073	1123				z = 128
8	26° 36′	60	1.999	1.998	645	2.012	220		пр.гр. $P2_{1/n}$
9	28° 24′	90	1.882	1.882	027	1.890	191		$\rho_{\rm x} = 5.8 / 0 {\rm r/cm^3}$
10	31° 24′	40	1.718	1.717	275,390	1.710	0102		CuAgSe
11	33° 42′	50	1.613	1.614	038				орторомоическая
12	37° 24′	10	1.474	1.473	908,286				a = 4.080
13	39° 06′	30	1.419	1.419	938	1.411	243		B = 20.333
14	41° 24′	10	1.354	1.354	078,1010				c = 0.273
15	45° 54′	10	1.247	1.246	0510	1.247	0104		пр.гр. $D_{2h}^{\prime} - P4 / nmm$
16	48° 00′	20	1.205	1.205	0610	1.204	115		z = 10
									$\rho_x = 7.883 \text{ г/cm}^3$
1	27° 54′	90	1.913	1.913	027	1.923	191	673	
2	30° 57′	40	1.740	1.740	275	1.741	0102		CuAgSe
3	33° 05′	50	1.640	1.640	038				a = 4.160
4	36° 48′	10	1.494	1.494	908				в = 20.757
5	38° 29′	30	1.438	1.438	938	1.430	243		c = 6.387
6	40° 32′	10	1.377	1.377	1.0.10				$\rho_x = 7.525 \ r/cm^3$
7	45° 01′	10	1.266	1.266	0510	1.266	0104		
8	47° 00′	20	1.224	1.224	0610	1.220	115		
1	16° 19′	40	3.176	3.185	200			773	
2	23° 30′	65	2.246	2.245	220				ГЦК
3	27° 52′	100	1.915	1.915	311				a = 6.356
4	29° 12′	70	1.834	1.835	222				пр.гр.Fm3m
5	34° 19′	30	1.588	1.588	400				z = 4
6	37° 54'	80	1.457	1.458	331				$\rho_x = 6.376 \ r/cm^3$
7	39° 04′	30	1.420	1.420	420				
8	43° 39'	50	1.297	1.297	422				
9	47° 04′	90	1.222	1.223	333,511				

Температуру образца перед началом каждой записи поддерживали постоянной в течение 40 минут. Как видно из таблицы 1, с ростом температуры, число отражений и их интенсивности, зафиксированные при комнатной температуре, остаются постоянными. При 773К в прежнем интервале углов фиксируются 9 отражений, принадлежащие высокотемпературной ГЦК модификации с параметрами элементарной ячейки, a=6.356Å, z=4, пр.гр. Fm3m. По исчезнувшим дифракционным отражениям определена температура превращения двух модификаций, которые одновременно превращаются в ГЦК модификацию Т_{пр.}=695±2К. На рисунке 1 приведены температурные зависимости параметров решетки существующих модификаций в Cu Ag Se_{0.5}S_{0.5}. Как видно, параметры элементарной ячейки a₁, в₁, с₁ моноклинного Cu_{1.96}S при 373К отклоняются от линейности, т.е. параметры в₁ и с₁ резко растут, а параметр а₁ уменьшается и после 373К линейно растет. Параметры решетки а2 и с2 модификаций принимавших орторомбическую структуру CuAgSe при 437К отклоняются от линейности.

Несмотря на такое поведение параметров решетки от температуры обеих модификаций, в числах дифракций их интенсивностях И существенные изменения не происходят. температурной Рассчитанные ИЗ зависимости параметров решетки существующих модификаций в составе Си Ад Se_{0.5}S_{0.5} коэффициенты теплового расширения приведены в таблице 2.

Как видно, в модификации принимавшей структуры $Cu_{1.96}S$ тепловое расширение заметно отличается в направлении [010], чем [100] и [001], т.е. $\&_{[100]} < \&_{[001]}$.

Отметим, что в низкотемпературной моноклинной модификации слои атомов серы образуют плотную гексагональную упаковку, а атомы меди между этими слоями распределены тремя различными способами. В структуре 51 атом меди распределен в искаженных треугольниках, 9 в тетраэдрических пустотах и один находится в двойной координации. Возможно, атомы серебра частично занимают положения атомов меди.

модификация	Температура,	$\&_{100}$ 10 ⁻⁶ K ⁻¹	$\&_{[010]} 10^{-6} \text{K}^{-1}$	$\&_{[001]} 10^{-6} \text{K}^{-1}$	$\&_{cp} = \&_{[100]} + \&_{[010]} + \&_{[001]} / 3$
	К				10^{-6} K ⁻¹
Орторомбическая	293-373	- 19.05	238.48	21.16	80.20
$\underline{Cu}_{1.96}\underline{S}$	293-473	1.65	120.67	68.70	63.67
	293-573	5.18	87.01	49.95	47.38
	293-673	6.46	68.86	40.29	38.54
Орторомбическая	293-373	64.24	79.75	197.21	113.73
CuAgSe	293-473	76.14	35.44	87.65	66.41
	293-573	57.69	28.18	61.47	49.11
	293-673	47.66	28.71	46.97	41.11
ГЦК	773-873	0.11			0.11
Cu Ag Se _{0.5} S _{0.5}	773-973	0.13			0.13

Таблица 2. Коэффициенты теплового расширения Cu Ag Se_{0.5}S_{0.5}

В решетке CuAgSe атомы Ag находятся в плоскостях, перпендикулярных оси <u>с</u>. Около каждого из них располагаются 4 Ag на расстоянии 2.96Å и 6 Se на расстояниях 2.67Å (4 Se), 3.59Å (1 Se) и 3.64Å (1 Se). Атомы Se образуют вытянутые тетраэдры, в которых находятся атомы Cu. Расстояния Se - Se = 3.03 Å, расстояния Cu - Se = 2.06 - 2.50 Å, наименьшее расстояние Cu - Ag = 2.98 Å.

По основным кристаллографическим направлениям коэффициенты теплового расширения фазы, кристаллизовавшейся в структуре CuAgSe, обладают анизотропией, т.е. $\&_{[100]} \approx \&_{[010]} > \&_{[010]}$.

Сильная анизотропия теплового расширения обеих фаз в Cu Ag $Se_{0.5}S_{0.5}$ является одной из основных причин температурной нестабильности низкотемпературной фазы.

Необходимо отметить, что моноклинный $Cu_{1.96}S$ при 377К превращается в ГЦК фазу с параметрами решетки, а=6.082Å. В данном случае это не осуществляется, т.е. обе фазы ($Cu_{1.96}S$ и CuAgSe) при 695К превращаются в ГЦК фазу с параметрами решетки, а=6.356Å. При комнатной температуре кристаллы CuAgSe_0.5S_0.5, состоящие из двух фаз, при повышении температуры, как видно из анизотропии теплового расширения, деформируют друг к другу.

На границе раздела этих фаз образуется зародыш высокотемпературной ГЦК фазы, который растет за счет обеих фаз. Из этой единой ГЦК фазы при охлаждении разделяются две первоначальные фазы, т.е. кристалл возвращается в первоначальное состояние. Превращения обратимые и происходят по типу монокристалл-поликристалл.

II. CuAgSe_{0.5} Te_{0.5}

При комнатной температуре от произвольно кристалла CuAgSe_{0.5}Te_{0.5} ориентированного размерами 1x5x5 мм были зафиксированы 22 дифракционных отражения. Они совпали С отражениями, зафиксированными от интезированного образца (в таблице 3 они отмечены звездочкой). Как видно, состав CuAgSe_{0.5}Te_{0.5} состоит из трех фаз. 1-ая фаза по размерам элементарной ячейки идентична низкотемпературному Cu2Te, 2-ая фаза обладает элементарной ячейкой, отвечающей низкотемпературной фазе CuAgSe и метастабильно существующих примитивных кубических фаз. На дифрактограмме большинство рефлексов от наблюдаемых трех фаз накладываются друг на друга.

Рис.1 Температурные зависимости параметров решетки существующих фаз CuAgSe_{0.5}S_{0.5}

Причиной многофазности состава CuAgSe_{0.5}Te_{0.5} в основном является распределение анионов (Se и Te) и катионов (Cu и Ag), соответственно.

После записи дифрактограммы при комнатной температуре, была включена печь, и через каждые 50К проводились контрольные записи. Температуру образца перед началом каждой записи поддерживали постоянной в течение 40 минут. При этих условиях остается трехфазность образца CuAgSe_{0.5}Te_{0.5} (таблица 4) и при 441±1К обе орторомбические фазы превращаются в примитивную кубическую фазу. Превращения обратимые, т.е. при охлаждении образец возвращается в первоначальное состояние (табл.5).

NoNo	θ	I / I ₀	d _{atorr} , Å	Cuj	.96S	CuA	sSe.	кубиче	ская	Параметры
				d _{pace} , Å	hkl	d _{pace} , Å	hki	d _{pace} , Å	hkl	кристаллической решетки, Å
1	12° 32′	30	3.5525	3.5546	039	-	-			•
2	13° 20′	20	3.3430	3.3420	223	-	-			
3	14° 06′	25	3.1646*	3.1646	071,066	3.1550	002			
4	15° 03'	50	2.9696*	2.9675	217	-	-			
5	15° 41′	100	2.8520*	2.8534	208	-	-			
6	16° 23'	35	2.7336*	2.7344	069	-	-	2.7276	220	Cu ₂ Te
7	16° 42′	14	2.6823*	-	-	2.6813	042			a=7.319
8	17° 36′	10	2.5493*	2.5498	239	2.5437	080			в = 22.236
9	18° 56′	15	2.3756*	2.3736	088	2.3725	170			c = 36.458
10	19° 07′	15	2.3539	2.3536	273	2.3593	081			
11	19° 33′	65	2.3039*	2.3055	324	2.3101	062			
12	20° 12′	55	2.2326*	2.2322	097	-	-	2.2271	222	
13	20° 48′	25	2.1709*	2.1720	098	-	-			
14	21° 09′	40	2.1366*	2.1360	345	2.1312	152			CuAgSe
15	21° 59′	8	2.0590*	-	-	2.0598	023	2.0619	321	a= 4.1065
16	22° 42′	30	1.9977*	1.9979	294	-	-			в = 20.4124
17	23° 41′	4	1.9196*	1.9108	373	1.9169	221	1.9287	400	c = 6.2994
18	24° 11′	4	1.8821	1.8838	1109	1.8896	191			
19	26° 22′	10	1.7359*	1.7358	441	-	-			
20	26° 50'	10	1.7078*	1.7073	444	1.7101	0102			
21	27° 09′	10	1.6895*	1.6889	39.5	1.6917	261			кубическая
22	29° 03′	5	1.5875*	1.5865	3106	-	-			a = 7.7149
23	32° 18′	7	1.4426*	1.4423	514	1.4419	193			
24	33° 42′	8	1.3895	1.3896	545	1.3847	154			
25	34° 22′	20	1.3656*	1.3658	555	1.3653	310	1.3638	440	
26	36° 45′	5	1.2884	1.2881	577	-	-			
27	38° 22′	8	1.2419*	1.2410	595	1.2414	224			
28	41°00′	10	1.1750*	1.1758	651	1.1735	264			

Таблица 3. Расчет порошкограммы CuAgSe_{0.5}Te_{0.5}. Излучение CuK_& ($\overline{\lambda_{\alpha}}$ = 1.5418 Å), фильтр - Ni, 10 кB, 24 мA, экспозиция 16ч. Т_{ачел} = 290К

На рисунке 2 приведены температурные зависимости параметров элементарных ячеек всех фаз для CuAgSe_{0.5}Te_{0.5}, существующих в интервале температур 293-673К. Видно, что параметры обеих орторомбических и кубических фаз в зависимости от температуры растут линейно. Как видно из рисунка 2, при превращении обеих орторомбических фаз в кубическую фазу, параметр $a_{\kappa} = f(T)$ не отклонялся от линейности. Отсюда следует, что кубическая фаза при превращении обеих орторомбических фаз играет роль затравки.

Из температурной зависимости параметров решетки рассчитаны коэффициенты теплового расширения (10^{-6} K⁻¹): І - орторомбической фазы кристаллизующихся в структуре Cu₂Te &_[100] =-10.76,

 $\&_{[010]} = 7.10, \&_{[001]} = 19.47;$ II - орторомбической фазы кристаллизующихся в структуре CuAgSe $\&_{[100]} = 10.65, \&_{[010]} = 18.06, \&_{[001]} = 45.63$ и кубической фазы & = 22.36.

Коэффициенты теплового расширения обеих орторомбических фаз в отдельных кристаллографических направлениях очень велики и как правило, имеется сильная анизотропия. В орторомбической фазе, кристаллизующейся В структуре Cu₂Te, коэффициент теплового расширения направлении [100] отрицателен. Сильная в анизотропия теплового расширения является одной из основных причин нестабильности структуры обеих орторомбических фаз.

NoNo	θ	I / I ₀	d _{atorr} , Å	Cu	2Te	CuAgSe		кубическая		Параметры
				d _{paer} , Å	hkl	d _{paer} , Å	hkl	d _{pace} , Å	hkl	кристаллической
				-						решетки, Å
1	15° 40′	30	2.8551	2.8537	208	-	-	-	-	
2	16° 21′	4	2.7385	2.7385	069	-	-	2.7325	220	
3	16° 38′	20	2.6926	2.6958	219	2.6880	042	-	-	Cu_2Te
4	17° 34′	15	2.5543	2.5528	177	2.5549	080	-	-	a = 7.3127
5	18° 15′	20	2.4622	2.4641	178	-	-	-	-	в = 22.3607
6	18° 36′	20	2.4165	2.4161	302	-	-	-	-	c = 36.5148
7	19° 30′	59	2.3095	2.3051	324	2.3168	062	-	-	
8	20° 10′	100	2.2358	2.2308	341	2.2277	171	2.2310	222	<u>CuAgSe</u>
9	21° 28′	32	2.1062	2.1077	353	-	-	-	-	a = 4.1100
10	21° 54′	36	2.0668	2.0695	279	-	-	2.0656	321	в = 20.4419
11	23° 39′	14	1.9220	-	-	1.9195	221	1.9322	400	c = 6.3224
12	25° 58′	12	1.7604	1.7568	433	1.7604	260	-	-	
13	27° 07′	10	1.6913	1.6925	395	1.6829	192	-	-	
14	29° 00'	10	1.5901	1.5905	3106	1.5805	004	-	-	
15	31° 26′	9	1.4782	1.4838	486	1.4782	144	-	-	кубическая
16	31° 48′	4	1.4628	1.4594	510	1.4671	0103	-	-	a = 7.7287
17	32° 16′	2	1.4439	1.4411	514	1.4493	2100	-	-	
18	33° 36′	20	1.3930	1.3901	545	1.3877	154	-	-	
19	34° 20'	5	1.3668	1.3662	555	1.3669	310	1.3662	440	
20	37° 12′	8	1.2751	1.2831	584	1.2751	283	-	-	
21	39° 03′	10	1.2237	1.2213	5810	1.2275	045	-	-	

NeNe	θ	I / I ₀	d _{zen,} Å	d _{pace} , Å	bkl	Параметры кристаллической решетки, А
1	16° 19′	38	2.7431	2.7431	220	
2	20° 08'	100	2.2397	2.2397	222	
3	21° 49′	75	2.0739	2.0716	321	a = 7.7587
4	23° 25′	30	1.9398	1.9396	400	
5	31° 05′	30	1.4931	1.4931	333	
6	34° 12′	35	1.3714	1.3715	440	

Таблица 5. Расчет дифрактограммы Cu Ag Se_{0.5}Te_{0.5} , $T_{_{ЭКСП.}} = 473K$

В составах Cu Ag Se_{0.5}S_{0.5} и CuAgSe_{0.5}Te_{0.5}, где заменены часть анионов Se анионами S и Te, при комнатной температуре однофазность не сохранялась. Кристаллы Cu Ag Se_{0.5}S_{0.5} при комнатной температуре двухфазные, одна фаза кристаллизуется в орторомбической структуре CuAgSe, другая в структуре Cu_{1.96}S. Обе моноклинной фазы одновременно при 540К превращаются в единую ГЦК фазу.

При комнатной температуре кристаллы CuAgSe_{0.5}Te_{0.5} трехфазные. Одна фаза кристаллизуется в орторомбической структуре Cu₂Te, вторая - в орторомбической структуре CuAgSe, а третья - в их метастабильно существующей кубической фазе. При 444К обе орторомбические фазы превращаются кубическую в фазу алмазоподобной структуры.

В кристаллах указанных составов превращения обратимые и после кратных превращений они возвращаются в первоначальные состояния.

Рис.2. Температурные зависимости параметров решетки существующих фаз CuAgSe_{0.5}Te_{0.5}

- [1]. 1.Earley J.W. // Amer.Miner.,1950,V.35,N5-6, p.345
- [2]. 2.Frueh A.J., Czamanske, Knight Ch.. // Zs.Krist, 1957,V.108,p.389

[3]. З.Байкулов Р.Б., Асадов Ю.Г.. // Изв.РАН, Неорганические материалы, 2005, N4, р.344
[4]. 4.Evans H.T. // Zs.Krist., 1970,Bd. 150, N1-4, p.299