

РАЗРАБОТКА РАДИАЦИОННО-СТОЙКИХ ФОТОДИОДОВ НА ОСНОВЕ СЕЛЕНИДА ИНДИЯ С ТЕРМОЭЛЕКТРИЧЕСКИМ ОХЛАДИТЕЛЕМ

АБДИНОВ Д.Ш., АСКЕРОВ К.А., БЕКТАШИ М.Г., ГАДЖИЕВА В.И.

Институт Физики НАН Азербайджана

В статье исследованы свойства фотодиодов с термоэлектрическим охладителем на ближнюю ИК-область спектра, разработанных на основе монокристаллов селенида индия. Кроме того изучены воздействия ионизирующих излучений на термоэлектрические параметры термоматериалов и охладителей на их основе, определены абсолютные значения чувствительности фотодиодов с термоэлектрическим охладителем и определен механизм тока через p-n переход.

В данной статье рассматривается комплекс экспериментальных работ включающих разработку конструкции и изготовление радиационно стойких фотодиодов с термоэлектрическим охладителем для ближней ИК-области спектра на основе селенида индия и исследование воздействия ионизирующих излучений фотоэлектрических характеристик.

В литературе подобные работы отсутствуют [1-3].

Для изготовления фотодиодов использовались монокристаллические образцы селенида индия птипа проводимости полученные методом Бриджмена с концентрацией и подвижностью основных носителей заряда~10¹⁴ см⁻³ и 500÷1200см²/В с соответственно при комнатной температуре. В качестве компенсирующего элемента выбрано золото.

Из монокристаллического слитка препарировались тонкие слои толщиной 0,2-0,4 мм перпендикулярно оси "С" кристалла. На монокристаллические слои наносились в вакууме слои золота 0,30÷0,35мкм в виде кружков диаметров до 0,8 мм и расположенных на расстоянии 0,5мм друг от друга. Покрытые золотом пластины подвергались отжигу при температуре 523К в течении двух часов. Затем слои нарезались на чувствительные элементы размерами 1,00х1,00 мм.

Экспериментально установлено, что оптимальный рабочий температурный режим полученных таким образом фотодиодов на основе селенида индия является при ~263К. Для поддержания этой температуры применялись двухкаскадные термоэлектрические охладители разработанные нами.

Основные характеристические параметры ТЭО представлены в таблице.

Чувствительные элементы распаивались на пластины тепло перехода термоохладителя с помощью индия с расстоянием между ними 0,2мм. Затем производились распайка контактов на выводы корпуса. Таким образом можно получить до пяти элементных фотодиодов с ТЭО на основе селенида индия.

Термо	Время	Темпера	Сила	Потреб	Холодо	Кол-во	Кол-во	Охлаж	Мини	Срок	Macca
охлади	выхода	тура охлаж	тока	ляемая	произво	термо	выво	даемая	мальная	сохраняе	ТЭО
тель	на	дения	пита	мощ	дитель	элемен	дов,	площадь	наработка	мости,	Г.
	рабочий	T _{o.C} =333K	ния,	ность,	ность,	TOB	ШТ	KB.MM	час	лет	
	режим		Α	Вт	Вт	ШТ					
2-x	40	258÷263	3,0	3,0	0,40	30	16	32	1200	12,5	2,4
каскад											
ный											

Таблица № 1 Основные характеристические параметры ТЭО

На полученных фотодиодах измерялись вольтамперные характеристики и распределение фоточувствительности при комнатном и рабочем режиме ТЭО. Вольтамперные характеристики снимались на полуавтоматической установке с записывающим устройством.

Регистрация сигнала при измерениях спектральных характеристик фотодиодов с ТЭО производилась

по стандартной методике с помощью монохрамотора МДР-4. Спектральные характеристики снимались при прямом и обратном смещениях на фотодиоды, равных ± 3В.

Анализ ВАХ фотодиодов с ТЭО показали, что коэффициент качества примерно близки и меняются в интервале от 2 до 8. Механизм протекания через p-n переход тока соответствуют генерации – рекомбинации в объеме и на поверхности в области перехода.

Спектральные распределения фоточувствительности фотодиодов с ТЭО при прямом (кривые 1 и 1 ') и обратном (кривые 2 и 2') смещениях, снятые при комнатной температуре (кривые 1' и 2') и рабочем режиме ТЭО (кривые 1 и 2) представлены на рис. 1

Рис.1. Спектральное распределение фоточувствительности фотодиодов с ТЭО на основе селенида индия при прямом (кр.1 и 1[/]) и обратном (кр.2 и 2[/]) смещениях снятые комнатной (кр. 1 и 2) и рабочем режиме ТЭО (кр.1[/] и 2[/]).

Как видно из рисунка, фотодиоды на основе селенида индия фоточувствительны в области спектра от 0,5мкм с максимумом при $\lambda_{max} \approx 0,95$

мкм. Кривые спектральных характеристик фотодиодов с ТЭО по форме плато и местонахождением максимума несколько отличаются от кривых снятых при комнатной температуре, то есть без включения ТЭО. Как видно из кривых спектральных характеристик фотодиодов с ТЭО после включения термоохладителя абсолютное значение чувствительности увеличивается и основной максимум несколько смещается в коротковолновую область спектра. Расчетное значение абсолютной величины фоточувствительности фотодиодов без включения ТЭО при максимуме спектральной характеристики изменяться в интервале (0,10÷2,0)А/Вт.При этом вольт-ваттная чувствительность составляет $(1,0\div5,1)\cdot10^{4}B/BT.$ Значения указанных параметров после включения увеличивается примерно в 2÷3 раза. ТЭО Одновременно в фотодиодах с ТЭО растет значение дифференциального сопротивления. Приведенные результаты показывают , что эти фотоприемники ΜΟΓΥΤ быть использованы в условиях повышенной радиации.

Исследуемые термоэлектрические модули представляют собой унифицированные одно-и многокаскадные термобатареи из последовательно или параллельно последовательно включенных термоэлементов. Они состоят из различных узлов: Термоэлементов, теплопереходов, коммутирующих контактов.

Влияние ионизирующих излучений на температурный перепад на модулях возникающих при прохождении через него постоянного тока равного 2 А до и после облучения представлены в в следующей таблице.

Номер моду лей	Δ Т, град при / = 2А											
	Импульсные гамма-нейтроны, н/см ²				Элект энер	гронное огией 25	облучен МэВ, э/с	ие с см ²	Гамма-кванты, Р			
	До облуче ния	10 ¹³	5·10 ¹³	10 ¹⁴	До облуче ния	10 ¹³	5·10 ¹³	10 ¹⁴	До облуче ния	10 ⁶	10 ⁷	10 ⁸
1	39	42			39,5	36,5	36,0	40,0	39,0	38,0	38,0	37,0
2	40		44,5		39,5	36,0	36,5	39,0	38,0	37,0	37,0	37,5
3	38			40,0	38,5	37,0	36,0	39,5	38,3	37,0	37,0	37,5

Как видно из таблицы, облучение гамманейтронами до флю
енса $10^{14}\,\,{\rm сm}^{-2}\,$ приводит к $\,$ росту в ΔТ_{макс} модулей. Сопоставление вышеуказанных данных по влиянию облучений на эффективность п и р-ветвей дает основание предполагать, что такое изменение ΔТ обусловлено как уменьшением сопротивления переходных контактов, так и ростом термоэлектрической добротности ветвей термоэлементов. Исследование влияния ионизирующих излучений различного вида на температурный перепад ΔT термоэлектрического охладителя (ТЭО) показало, что после облучения охладителя гамманейтронами флюенсом 5·10¹³ см⁻², ΔT значительно растет. При обучении же охладителя электронами и гамма-квантами ΔT падает. Оптимальный ток питания, время выхода на режим и другие

параметры ТЭО после облучения не претерпевали заметного изменения.

Результаты проведенных исследований показывают, что изменения ΔT охладителей при облучении обусловлено как изменением параметров ветвей, так и изменением сопротивления переходных контактов. До, после и в процессе облучения на полученных фотодиодах с измерялись спектральное ТЭО распределение чувствительности, напряжение сигнала и шума. Измерения в процессе облучения на импульсной гамме установке и гамма-нейтронном реакторе проводились с помощью специально установки, разработанной универсальной предназначенной для дистанционных И автоматизированных измерений параметров фотодиодов . Характеристики структуры Au-InSe до,

после и в процессе облучения измерялись в режиме, когда через ТЭО протекал ток питания силой~2,0 А, вследствии чего фотодиоды охлаждаются до ~225 ±IK

B процессе проведения измерений на импульсной гамма установке и на импульсном реакторе фиксировались осциллограммы для регистрации изменения напряжения сигнала Uc и напряжении шумов Uш по двум каналам ОДНОвременно с двух одинаковых структур Au-InSe. По восстановлении Uc и Uш определялось время потери работоспособности $\tau_{\mbox{\tiny впр}}$ фотодиодов. Установлено, что на импульсные гамма установки при длительности импульса т_у=10.3+10.9 нс время потери работоспособности фотодиодов по регистрации снятых одновременно измерений Uc и Uш составляет : при мощности P_{γ} =1,7·10¹⁰ P/c, $\tau_{впр} \leq 0,7c$ по востановлению значений Uc при мощности гамма квантов $P_{\gamma}{=}3{,}08{\cdot}10^{10}$ P/c, $\tau_{{}_{B\Pi p}}{\leq}0{,}05c.$ Аналогичное измерение проводилось на импульсном реакторе и при этом значении время потери работоспособности составляет : при флюенсе нейтронов $\Phi_{\rm H} = 3,08\cdot 10^{12}$ см⁻² по восстановлению напряжения сигнала $\tau_{\text{впр}} \leq 1,7c$, по восстановлению Uш при $\Phi_{\rm H} = 3,35 \cdot 10^{12} \, {\rm cm}^{-2},$ флюенсе нейтронов $\tau_{\rm BRD}$ ≤0,01с. Таким образом, с учетом результатов проводимых исследований, среднее значение время потери работоспособности фотодиодов на основе индия с ТЭО в условиях импульсного селенида гамма и импульсного нейтронного облучения составляет : по восстановлению Uc, т_{впр} ≤1,7 и по восстановлению Uш $\tau_{впр} \leq 0,05c.При$ суммарном флюенсе нейтронов Φ н=6,39·10¹² см⁻² и дозы Р_у=4,15·10¹⁰ максимальной мощности Р/с.Результаты показывают что значение времени работоспособности, определенные по изменениям Uc и Uш сильно отличаются друг от друга.

Рис.2. Спектральное распределение фоточувствительности фотодиодов с ТЭО после импульсного гамма и импульсного реакторного облучения

На рис. 2 показано спектральное распределение чувствительности фотодиодов на основе селенида индия с ТЭО через 10 суток после импульсного гамма и импульсного реакторного облучения.

Как видно из рисунка, после облучения мощностью гамма квантов $P_{\gamma} = 4,15 \cdot 10^{10}$ P/c и импульсных нейтронов флюенсом Фн=6,39 \cdot 10^{12} см⁻² фоточувствительность по всей области спектра несколько увеличивается (рис.1,кр.2). Следующий флюенс нейтронов Фн=1,2 · 10¹⁴ см⁻² приводит к уменьшению фоточувствительности фотодиодов с ТЭО не более чем на 30% (рис.1,кр.3).

Расчетные значения абсолютной величины фоточувствительности фотодиодов при максимуме спектральной характеристики ($\lambda_{max} = 0.95$ мкм) изменяются в интервале (0,2+4,0)А/Вт, при этом вольт-ваттная чувствительность составляет (2,1+9,1) $\cdot 10^4$ В/Вт. С ростом флюенсов облучение указанные выше значения уменьшаются не более чем~30%. Одновременно в фотодиодах растет значение дифференциального сопротивления.

Было исследовано также влияние изохронного отжига продолжительностью 30 минут на фотоэлектрические свойства облученных структур Au-InSe. Выяснено, что после изохронного отжига в интервале 70-150°C (с шагом 20 градусов) фотоэлектрические параметры структуры восстанавливаются. В результате облучения практически не наблюдалось изменений конструкции И конструкционных материалах фотодиодов, а также параметров с ТЭО.

Предполагается, что при малых флюенсах облучение происходит в основном, перераспределением золота, вследствие чего получается более совершенный и стабильный р-п переход и фоточувствительность структуры увеличивается.

Невысокие по сравнению со слоем энергетические барьеры существующие в межслойном промежутке слоистого кристалла InSe, благоприятствуют миграции радиационных дефектов с ростом флюенсов облучения.

Это, в свою очередь облегчает процесс комплексов из радиационных и исходных дефектов в межслойных промежутках. Вследствие этого происходит образование новой высокоомной прослойки, приводящий к некоторой деградации фотоэлектрических параметров структур Au-InSe.

В результате изохронного отжига происходит постепенная рекомбинация радиационных дефектов, вследствие чего фотоэлектрические параметры структуры восстанавливаются.

- [1]. К.А.Аскеров, Э.М.Алиев, Ф.К.Исаев, Д.Г.Амиров. ДАН Азерб.ССР, 1990, № 12, т.1.с.21-23
- [2]. İ.Hasarawa,Y.Abe.Phys.Stat.Sol.(a) ,1982, v.70, p.615-621.
- [3]. A.Segura, İ.M.Besson. Nuovo Cimento, 1977, 38B, p.345.