

FeInSe₃, Ga_{0.5}Fe_{0.75}In_{0.75}Se₃, GaFeSe₃ TƏRKİBLİ MAQNİT YARIMKEÇİRİCİLƏRİN SİNTEZİ VƏ RENTGENQURULUŞ XÜSUSİYYƏTLƏRİ

HÜSEYNOV Q.H., İBRAHİMQIZI Ş., SULTANOV Q.D., MƏHƏRRƏMOVA F.Q.

AMEA Fizika İnstitutu. Bakı AZ-1143, H.Cavid 33. E-mail gguseynov@yandex.ru

In₂Se₃ və GaInSe₃ tipli yarımkeçiricilərdə GaIn atomlarının Fe atomları ilə əvəz olunması yolu ilə InFeSe₃, Ga_{0.5}Fe_{0.75}In_{0.75}Se₃, GaFeSe₃ tərkibli maqnit yarımkeçiriciləri sintez edilmişdir. Rentgenquruluş analizi əsasında müəyyən edilmişdir ki, birinci iki tərkib romboedrik simmetriyalı izomorf quruluşda kristallaşır. Qəfəs sabitləri uyğun olaraq heksaqonal aspektdə a=4,022(24) c=38, 920A⁰(11), a=3,950 (3) c=38,629 A⁰ (24) və kubik qəfəsdə kristallaşan GaFeSe₃ üçün a= 11,020 A⁰ (09)-dir.

Məlumdur ki, dövri sistemin III^B qrup elementlərinin polihalkogenidləri sırasında M2X3 tipli (M-In, Ga, TL, Al; X-S, Se, Te) yarımkeçirici maddələr bir çox fizikikimyəvi xüsusiyyətlərinə görə olduqca maraqlı tədqiqat obyektləri kimi tədqiqatçıların diqqətini cəlb etməkdədir. Qeyd edək ki, göstərilən tip yarımkeziricilərin əsas xüsusiyyətlərindən biri onların fiziki xassələrinin aşqarların qatılığından olduqca az asılı olmasıdır. Buda, şübhəsiz ki, bu tip birləşmələrdə quruluş defektlərinin olduqca yüksək, təxminən 5,5·10²¹sm⁻¹ tərkibdə olması ilə bağlıdır. Əlbəttə, bu tip yarımkeciricilərin ümumi mənzərəsi N.A.Qoryunovanın məlum monoqrafiyasında [1] ətraflı surətdə müzakirə olunmuşdur. Lakin onu da qeyd etmək lazımdır ki, bu birləşmələrdə "xüsusi defektlərin hədsiz çox olması, nəticə etibarı ilə onlarda istilikkeçirmənin və yükdaşıyıcıların yürüklüyünün cüzi olmasına səbəb olur.

Əlbəttə, ilk baxışdan göstərilən xüsusiyyətlər müəyyən mənada mübahisələrə səbəb olsalar da, bütün bunlar reallıqla uyğun olan həqiqətdir və tədqiqatçıların da əsas vəzifəsi bu reallıqları tədqiqat məqsədlərinə uyğun istiqamətlərə yönəltməklə lazım olan xassəyə uyğun materialların kimyəvi reallaşması üçün optimal şəraitin yaradılmasına nail olmaqdan ibarətdir. Bu mənada məqsədyönlü texnologiya və rentgenquruluş tədqiqatların sistemli formada aparılması xüsusi əhəmiyyət kəsb edə bilər. Qeyd edək ki, məhz belə yanaşma əsasında aparılan tədqiqatlar nəticəsində Ga2S3-In₂S₃ sistemində ümumi düsturu Ga_{1-x}In_{1+x}S₃ tipli monokristallarda orijinal rombik, spinel quruluşlu kubik, paketli triqonal quruluş və üç müxtəlif (qarısıq) heksaqonal modifikasiyada çoxsaylı politip quruluşlar alınmış və onların kristal quruluşları açılmışdır |2-4|.Sonradan tipik fotohəssas yarımkeçiricilər olan (GaIn)S₃-ün əsasında tetraedrik və oktaedrik kationları mis və dəmir atomları ilə əvəz etməklə həm

əvəzləmənin quruluş əmələgəlmə prosesinə təsiri, həm də maqnit xassələrinin səciyyəsi öyrənilmişdir [5 - 6].

Təqdim olunan iş yuxarıda göstərilənlər əsasında selenli analoqların sintez edilməsi və alınan fazaların quruluş xüsusiyyətlərinə həsr olunmuşdur.

<u>SİNTEZ</u>.

Qarşıya qoyulmuş məqsədə uyğun olaraq ilk növbədə iki kənar və bir aralıq fazanın – yəni FeGaSe₃, FeInSe₃, Ga_{0.5}Fe_{0.75}In_{0.75}Se₃ tərkiblərin sintezinin kimyəvi reallaşması yerinə yetirilmişdir. Qeyd edək ki, hər üç tərkibin sintezi eyni şəraitdə aparılmışdır, yəni stexiometrik tərkibə uyğun olaraq tərkibə daxil olan yüksək kimyəvi təmizliyə malik Ga, In, Fe, Se ümumi çəkisi 5 qrama uyğun çəkilərək yüksək keyfiyyətli kvars borudan hazırlanmış ampulalara doldurulmuş, havası 10^{-4} ç.s tərtibinə qədər sorulmuş və ağzı bağlanaraq bir zonalı sintez peçinə yerləşdirilmişdir. Hər tərtibə uyğun ampula ayrı-ayrı sınaqlardan keçırilmişdir.

Sintez prosesinin gedişi aşağıdakı qaydada aparılmışdır. Ampula peçə yerləşdirildikdən sonra onun temperaturu tədricən 500°Ç-ə qədər qaldırılmış və bu temperaturda 3 saat saxlanmışdır. Se buxarının mütəmadi olaraq reaksiya zonasına yönəltmək üçün ampulanın bir ucu peçdən kənarda saxlanmış və daima su ilə soyudulmuşdur. Sonra peçin temperaturu 700° Ç-ə qədər qaldırılmış və 2 saat müddətində ampulanın ucuna toplanan Se buxar soyutma yolu ilə reaksiya zonasına qovulmuşdur. Se buxarı tam tükəndikdən sonra ampula peçin daxilinə ötürülmüş, peçin ağzı bağlanmış, temperatur 1000° C-ə qaldırılmış və 1,5 saat həmin temperaturda saxlandıqdan sonra temperatur 600°Ç endirilərək 20 günlük tablama prosesində saxlanmışdır. Təcrübə bitdikdən sonra ampulalar peçdən çıxarılmış, sındırılaraq alınan nümunələrə vizual və mikroskopik baxış keçirilmişdir. Məlum olmuşdur ki, alınan

nümunələr aqreqat görünüşünə görə iki formadadır: GaFeSe₃ dənəvari aqreqat formasında, InFeSe₃ və Ga_{0.5}Fe_{0.75}In_{0.75}Se–laylı aqreqat formasındadır. Qeyd edək ki, üçüncü nümunə bütövlükdə laylı monokristal bloklardan ibarətdir və bu da onun səthindən rentgen difraksiyası almaq imkanı verir. İkinci nümunə bloklardan ibarət olsa da, keyfiyyətcə ücünçüdən aşağıdır.

Ona görə də ikinci nümunədən öncə həm Laue rentgenogramı, həm də səthdən əksolma rentgenogramı alınmış, onun heksaqonal sinqoniyada kristallaşması, səthdən əksolma rentgenoqramında isə OOl tipli piklər olduğundan asanlıqla kristalın "ç qəfəs sabiqi təyin olunmuşdur. Sonra hər üç nümunədən həb hazırlanmış və avtodifraktometrdə ÇuKa antikatodunda difraktoqramlar alınmışdır. $10^{\circ} < 2\theta < 80^{\circ}$ intervalında fiksə edilmiş bütün difraksiya pikləri üçün atom müstəviləri arasındakı məsafələr, onların intensivlikləri hesablanmış və onlar əsasında difraksiya piklərinə uyğun olan indekslər (h k l) kristalların qəfəs sabitləri hesablanmışdır. və Hesablanmış əsas kristallografik məlumatlar 1-3 cədvəllərdə verilmişdir.

Aparılmış təcrübələr və onlar üzərində hesablamalar əsasında müəyyən edilmişdir ki, GaFeSe₃ sulfid analoqundan fərqli olaraq kubik sinqoniyanın Im3m fəza qrupunda kristallaşır. Onun qəfəs sabitia=11,02 E, V_{qəfəs} = 1331,7E³, bir selenə düşən həcm V_{se} = 41,5 E³, sıx

yerləşmə əmsalı K_y=0,732 x 100%, rentgen sıxlığı ρ_{τ} = 4,45 gr/sm³, qəfəsə düşən formula vahidinin sayı z=10,67; InFeSe₃ romboedrik sinqoniyanın R3m fəza qrupunda kristallaşır və onun heksaqonal aspektdə qəfəs sabitləri a = 4,00, ç= 39,00E, V_q = 541E, ρ_{τ} = 4,67 gr/sm³, V_{se} = 45,5 E³, K_y=0,661x100%, z=4; Ga_{0.5}In_{0.75}Fe_{0.75}Se₃ həmçinin romboedrik qəfəsdə R3m fəza qrupunda kristallaşır, onun heksaqonal aspektdə qəfəs sabitləri a = 3,958, ç= 38,70E, V_q = 525E³, V_{se} = 43,4 E³, ρ_{τ} = 4,7 gr/sm³, K_y=0,690 x 100%, z=4.

Alınmış nəticələrin analizi və aparılmış quruluş hesabatları əsasında belə nəticəyə gəlinmişdir ki, ikinci və üçüncü tərkibin quruluşları eynidir, qəfəs üçpaketli laylı quruluşa uyğundur və quruluş xüsusiyyətinə görə FeIn₂Se₄ | 7 | tiplidir. Quruluşlar eyni olsalar da atomların tetraedrik və oktaedrik boşluqlarda paylanma əmsalları müxtəlifdir. Atomların paketlərdə paylanma ardıcıllıqları aşağıdakı sxem üzrədir:

FeInSe₃ üçün Se – $\frac{1}{2}$ Fe – $\frac{1}{3}$ In – Se – In – Se $\frac{5}{6}$ Fe – Se_m

 $Ga_{0.5}\ Fe_{0.75}In_{0.75}Se_3$ üçün ... Se $^{5}\!\!/_{6}\ Fe\ -Se\ -In\ -Se\ -{}^{2}\!\!/_{3}$ Ga $^{-1}\!\!/_{6}\ Fe\ -Se$

 $GaFeSe_3$ isə həcmdə mərkəzləşmiş şpinel quruluşa malikdir.

Qeyd edək ki, bu modellərin maqnit xassələrinə həsr edilən məqalə çapa hazırlanır.

Cədvəl 1 FeInSe₃-ün rentgen difraksiyasından hesablanmış kristalloqrafik konstantları

		200	2	,	1	
Ν	20	h k l	Inten	D təcrü	d hesab	Δd
1.	20.338	009	14.1	4.3630	4.3249	-0.1810
2.	25.594	100	15.1	3.4777	3.4827	0.0374
3.	25.915	102	6.7	3.4354	3.4283	-0.0546
4.	27.976	105	100.0	3.1867	3.1791	-0.0686
5.	28.605	016	13.4	3.1181	3.0964	-0.0217
6.	31.675	108	6.9	2.8226	2.8320	0.1082
7.	32.335	0 0. 14	6.9	2.7664	2.7803	0.1657
8.	36.107	1 0. 11	13.2	2.4856	2.4822	-0.0519
9.	41.452	1 0. 14	14.5	2.1766	2.1728	-0.0749
10.	45.072	110	40.3	2.0098	2.0108	0.0221
11.	47.363	116	8.0	1.9178	1.9206	0.0727
12.	48.225	117	4.4	1.8855	1.8909	0.1460
13.	50.045	119	16.7	1.8212	1.8233	0.0636
14.	51.577	0 0. 22	7.1	1.7706	1.7693	-0.0413
15.	52.615	200	6.6	1.7381	1.7414	0.1068
16.	53.945	205	18.0	1.6983	1.6994	0.0354
17.	58.039	2 0. 10	6.6	1.5879	1.5895	0.0658
18.	59.139	2 0. 11	6.6	1.5610	1.5624	0.0608
19.	62.915	2 0. 14	8.5	1.4760	1.4758	-0.0118
20.	71.783	210	6.8	1.3139	1.3163	0.1516
21.	72.844	215	15.9	1.2974	1.2979	0.0342
22.	80.619	21.14	9.9	1.1907	1.1897	-0.0801
23.	83.119	3 0 0	9.9	1.1611	1.1609	-0.0200
24.	99.942	1 0. 37	6.6	1.0060	1.0071	0.1469
25.	106.690	314	7.1	0.9602	0.9612	0.1650

Cədvəl 2 Ga_{0.5}Fe_{0.75}In_{0.75}Se₃-ün rentgen difraksiyasından hesablanmış kristalloqrafik konstantları

Ν	20	h k l	Inten	D təcrü	d hesab	Δd		
1.	20.603	0 0 9	3.1	4.3076	4.2921	-0.0752		
2.	26080	101	4.2	3.4140	3.4110	-0.0231		
3.	28.497	105	100.0	3.1297	3.1306	0.0086		
4.	36.663	1 0. 11	3.1	2.4492	2.4517	0.0390		
5.	42.033	1 0. 14	3.8	2.1479	2.1485	0.0137		
6.	45.861	110	23.1	1.9771	1.9771	-0.0006		
7.	50.805	119	11.3	1.7957	1.7957	0.0014		
8.	53.599	201	0.9	1.7085	1.7105	0.0685		
9.	54.420	204	1.8	1.6846	1.6859	0.0442		
10.	54.905	205	12.2	1.6709	1.6716	0.0266		
11.	60.078	2 0. 11	1.1	1.5388	1.5390	0.0099		
12.	63.895	1 0. 24	1.3	1.4557	1.4567	0.0444		
13.	73.114	210	1.1	1.2933	1.2943	0.0675		
14.	74.202	215	7.8	1.2770	1.2765	-0.0321		
15.	78.773	21.11	1.5	1.2139	1.2144	0.0387		
16.	82.097	2 0. 24	1.1	1.1730	1.1727	-0.0228		
17.	84.805	300	7.1	1.1423	1.1415	-0.0781		
18.	88.440	1 1. 29	1.4	1.1045	1.1047	0.0189		

Cədvəl 3 Fe GaSe3-ün rentgen difraksiyasından hesablanmış kristalloqrafik konstantları

Ν	20	h k l	Inten	D təcrü	d hesab	Δd
1.	16.155	200	5.9	5.4821	5.4891	0.0205
2.	22.927	220	4.1	3.8759	3.8424	-0.2030
3.	28.157	222	100.0	3.1667	3.1616	-0.0470
4.	28.720	321	6.6	3.1058	3.0924	0.0134
5.	32.492	400	6.5	2.7534	2.7445	-0.1081
6.	36.572	420	6.1	2.4551	2.4613	0.0961
7.	37.558	332	1.9	2.3929	2.4015	0.1397
8.	40.213	422	2.8	2.2408	2.2497	0.1669
9.	42.161	510	2.1	2.1416	2.1523	0.2191
10.	46.748	440	69.3	1.9416	1.9379	-0.0938
11.	47.450	531	3.1	1.9145	1.9212	0.1750
12.	48.350	433	3.1	1.8809	1.8814	0.0113
13.	49.765	600	1.7	1.8307	1.8297	-0.0306
14.	50.576	611	1.7	1.8033	1.8131	0.2929
15.	55.408	622	36.5	1.6569	1.6579	0.0377
16.	57.196	444	0.8	1.6093	1.6068	-0.0956
17.	58.196	444	0.8	1.5840	1.5808	-0.1297
18.	63.242	642	1.8	1.4692	1.4661	-0.1468
19.	68.179	800	5.5	1.3743	1.3759	0.0902
20.	75.279	662	10.9	1.2614	1.2648	0.2389
21.	86.675	844	10.7	1.1224	1.1249	0.2356

- [1]. Горюнова Н.А. «Слосные алмазоподобные полупроводники». М. изд. «Советское радио». 1968, с.164
- [2]. Гусейнов Г.Г., Амирасланов И.Р., Кулиев А.С., Мамедов Х.С. Кристаллография. 1987. Т.32. №1. с .243-244
- [3]. Гусейнов Г.Г., Кязумов М.Г., Кулиев А.С., Амирасланов И.Р. ДАН Азерб. ССР. 1988. Т.44. № 7. с.26-30.
- [4]. Гусейнов Г.Г., Амирасланов И.Р., Кулиев А.С., Мамедов Х.С.Изв. АН СССР. Неорг. Матер. 1987. Т.23. №5, с.854-856
- [5]. Guseinov G.G., Musayeva N.N., Asadova I.B. I.Fizika NAN Azerb. Rep. 2004, V.X. № 1.2, p.p. 8-9
- [6]. Guseinov G.G., Gasimov V.A., Magerramova F.G. I.Fizika NAN Azerb. Rep. 2002, V.8. №2, p.p. 33-35
- [7]. Reil S.Haeuseler I. of Alloys and Compounds. 1998. V.270. p.p. 83-87