

"Fizika-2005" Веупәіхаіq Konfrans International Conference Международная Конференция

səhifə

İyun 7 - 9 June Июнь

2005

№151 page

раде 583-586 стр.

Баку, Азербайджан

Baku, Azerbaijan

НАНОПРИМЕСНАЯ РЕГУЛЯЦИЯ СЕЛЕНОМ ОКИСЛИТЕЛЬНО-ДЕСТРУКТИВНЫХ ПРОЦЕССОВ В БИОМАКРОМОЛЕКУЛАХ

ШУКЮРЛЫ Ю.Г., МАМЕДОВ Ш.В., ГУСЕЙНОВ Т.М.

Институт Физики НАНА, Баку, Аз 1143, пр. Г. Джавида, 33. thuseynov@physics.ab.az

Показано, что селен включается в структуру полимерного белка – фиброин шелка. При этом возрастает стойкость к окислительной деградации, вызванная электрическим разрядом. В его основе лежит усиление антирадикальных и антиперекисных свойств биомакромолекулы при включении селена в структуру фиброина.

Селен также избирательно (в зависимости от вида) включается в другой высокомолекулярный белок неполимерной структуры – гемоглобин. Установлено, что содержание селена коррелирует со стойкостью гемоглобина к окислительной реакции. Высказано предположение о том, что в белках селен выполняет роль электронных «ловушек».

Селен является одним из самых необходимых минералов для здоровья человека. Он входит в состав экзогенных белков, выполняющих как структурную, так и каталитическую функции. Известно более 30 селеновых белков [1]. При этом оказалось, что почти все Se-белки, чьи функции конкретно определены, обладают выраженными антиокислительными (АО) свойствами. Среди них семейство глутатион пероксидазных ферментов, йодтиронин-дийодиназа, тиоредоксин-редуктаза, Р, О, W белки, несущие различные физиологические функции и т. д. В частности, Ѕе-белки регулируют уровень гормонов щитовидной железы, состояние иммунной системы (в том числе и торможение перехода HIV состояние в СПИД, сперматогенез и т. д. [2, 3, 4].

Несмотря на огромные успехи в химии и биохимии селена механизмы его АО действию неоднозначны. Во многом это связано с существенной разницей в АО эффектах, полученных in vitro и in vivo [5].

В этой связи представляет самостоятельный интерес изучение его АО действии в изолированных белках при предварительном обогащении их селеном. В качестве удобного объекта был выбран хорошо изученный биополимер — природный белок фиброин шелка.

Учитывая, что шелк является традиционным электроизоляционным материалом, представлялось важным изучение протекторного свойства селена на стойкость фиброина к электрическому разряду. Для

сравнения рассматривали и другой белок – гемоглобин, обладающий сродством к селену [6].

МАТЕРИАЛЫ И МЕТОДЫ

Материалом исследования служила коконная нить тутового шелкопряда (Bombyx mori L) породы «Щеки-2» из которого стандартным путем получали фиброиновую нить, а также очищенный белок (кристаллики) фиброин [7]. Обогащение фиброина селеном производили через опрыскивания листьев шелковицы 0,1 % раствором Na₂SeO₃ [8, 9]. Определение количества исходном селена R осуществляли материале фиброине И В экстракционно-флюориметрическим методом применением селен чувствительного реагента 2,3 диаминонафталина (0,05 % раствор в 0, 1 N HCl) $\lambda_{\text{возб}}$ $= 366 \text{ HM}, \lambda_{\text{9MUCC}} = 520 \text{ HM} [10].$

В качестве фактора окислительной деструкции был выбран искровой разряд. Для этой цели была изготовлена кварцевая.

В качестве стандарта были использованы образцы 2,2 дифенил-3 пикрил гидразин (ДФПГ).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖЛЕНИЕ

Было выявлено, что во всех образцах после действия разряда возникает синглетный сигнал с g=2,003 и $\Delta Hm=0,8$ mT. Он насыщается при малых мощностях СВЧ поля, сверхтонкая структура не наблюдается. С увеличением времени действия разряда форма, g —фактор и ΔHm практически не меняются. Эти данные позволяют заключить, что в системе углеродных колец образуются и

стабилизируются свободные радикалы. При развитии разряда, в материале, основную роль играют тепловые и химические процессы. Атомы углерода образуют структуры конденсированных колец, т.е. свободные радикалы стабилизируются за счет образования резонансно- кольчатых структур [11].

Во время разряда материал подвергается УФ- и световому облучению, возникающимся в разрядном

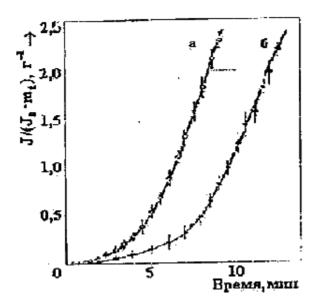


Рис. 1. Зависимость относительной интенсивности сигнала ЭПР в фиброине, приведенной к единице массы от времени действия искро вого разряда: J_1 и m_1 –интенсивность сигнала ЭПР и масса образца после воздействия разряда в течение времени t , J_0 – интенсивность стандартного сигнала. а –для контрольных; 6-для опытных образцов

Из кривых (рис.1 и рис.2), показывающих кинетику разрушения фиброина под действием искрового разряда видно, что скорость накопления свободных радикалов для опытных образцов существенно меньше по сравнению с контрольными и это заметно проявляется на начальной стадии воздействия разряда.

На рис.2 представлена зависимость $\lg [J_t/(J_0m_t)]$ от времени действия искрового разряда t. Из него видно, что при старении фиброина под действием искрового разряда в нем могут образоваться различные по характеру свободные радикалы, причем константы скоростей процесса накопления каждого из них для контрольных (1a) образцов намного больше, чем для обогащенных селеном (1 б).

Процессы разложения и улетучивания легких продуктов приводят к потере массы. На рис. 3 показана зависимость потери массы m_t/m_0 от времени действия разряда t. Видно, что при воздействии разряда потери массы для контрольных образцов значительно больше, чем для опытных. Следовательно, при введении селена

пространстве. Однако, ввиду их слабой интенсивности и малого времени воздействия разряда, ими практически можно пренебречь. На рис. 1 приведена зависимость относительной интенсивности сигнала ЭПР, приведенной к единице массы, от времени действия искрового разряда для контрольных (1 a) и опытных (16) образцов.

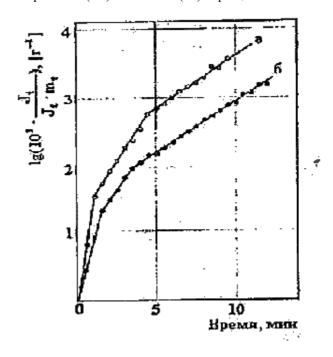


Рис. 2. Зависимость $lg[10^3 J_t/(J_0 m_t)]$ фиброина от времени искрового разряда:действия адля контрольных; б-для опытных образцов

в структуру фиброина, он становится более устойчивым к действию электрического разряда, т.е. замедляется развитие окислительно-деструктивных реакций. Селен действует подобно превентивным антиоксидантам при высоких температурах, т. е. разлагает перекиси, образующиеся на начальных этапах окисления фиброина под действием разряда, до неактивных продуктов по схеме [12]:

На основе полученных результатов по исследованию свободно-радикальных процессов R происходящих под действием облучения [13] и разряда [14],которые укладываются в представления выдвинутых академиком Н. М. Эммануелем о механизме старения полимерных материалов [15], можно предположить, что Se образует дополнительные боковые разветвления в аморфных прослойках фиброина, что приводит к замедлению скорости диффузии кислорода в полимер, это связано с тем, что фиброин является аморфно-крситаллическим

полимером и, в них, в первую очередь, протекает процесс окисления в аморфных областях [16]. Отсюда следует, что антиокислительное действие селена в фиброине связано с характером его надмолекулярной структуры и распределением селена в окисляющемся полимере.

Согласно [17], при кристаллизации фиброина разветвления селективно вытесняются на поверхность кристаллитов, в аморфные прослойки. Поэтому, естественно считать, что в фиброине Se, как разветвляющий центр, локализуется на границах раздела кристаллических образований и в аморфных прослойках. Для количественной оценки распределения атомов селена в фиброине приведем некоторые грубые расчеты.

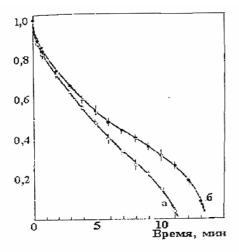


Рис. 3 Зависимость потери массы фибронна от времени действия искрового разряда: **a** – для контрольных; **б** – для опытных образцов.

Плотность кристаллических областей фиброина равна $1,423\cdot 10^{-3}$ кг/м³ [18]. Следовательно, их удельный объем равен $0,7\cdot 10^{-3}$ м³/ кг. Принимая во внимание, то, что в фиброине, приблизительно 60% всей массы занимают кристаллические области, тог в 1 кг полимера содержится 0,6 кг кристаллической части, объем которого составляет $0,42\cdot 10^{-3}$ м³.

При формировании кристаллитов их диаметр составляет примерно 10-20 нм, а длина достигает десятки микрометр [19]. Полагая, что все микрофибриллы фиброина образованы из кристаллических областей диаметром 10 нм и длиной 5мкм, получаем, что объем одного кристаллита равен $0.39\cdot 10^{-21}$ м 3 . По величине объема одного кристаллита можно оценить, что число кристаллических образований в 1 кг фиброине – порядка 10^{18} .

Максимальное содержание экзогенного селена в 1 кг фиброина составляет $0.27\cdot 10^{-6}$ кг. Отсюда, количество атомов селена в 1 кг фиброина равно $2\cdot 10^{18}$, т.е. 1 кг фиброина может содержать $2\cdot 10^{18}$ атомов селена. Сравнение числа кристаллических образований и атомов селена в 1 кг фиброина приводит к тому, что на каждое

кристаллическое образование приходится 2 атома селена, которые располагаются в аморфных прослойках. Это, однако, показывает сопоставимость количества атомов селена и кристаллических образований в фиброине, что подчеркивает возможность влияния нанопримесей селена на структуру фиброина и соответственно приданию ему большой окислительной резистентности.

Полученные результаты являются полезными для понимания эффектов усиления окислительной устойчивости других важных белков, обогащенных селеном, в частности гемоглобина. Последний имеет определенное сродство к селену, глубина которого имеет видовую специфичность [6].

Следует иметь в виду, что селен включается в белковую часть гемоглобина, которая защищает гем от окисления.

Приблизительная оценка соотношения количества атомов селена и молекул гемоглобина приводит к соотношению 1Se : \approx n 10^3 Hb, где n зависит от вида животного (для человека \approx 1, для крысы \approx 5 и т.д.) Эти расчеты основаны на известных допущениях:

- 1. усредненное содержание селена в эритроцитах ≈ 0.2 мг/мл(г), для жителей Азербайджана ≈ 0.12 мг/мл (г) [20].
- 2. Количество гемоглобина в 1 мл (г) эритроцитов составляет \approx < 20% [21].
- 3. На гемоглобиновую фракцию эритроцитов человека приходится $\approx 90\%$ всего селена лизата эритроцитов [6, 22].

В случае обогащения организма селеном, последний активно включается в гемоглобин, после чего начинает выводиться. Достаточно высокий уровень его в гемоглобине сохраняется в течении длительного времени [23]. Ранее было показано, что при воздействии таких радикалообразующих факторов как УФ и озон на изолированные гемоглобины разных видов животных, в них интенсивно развивается окислительный процесс [24, 25]. При этом гемоглобин, обладающий большой природной «емкостью» по селену (человек, морская свинка) обладает и большей резистентностью к окислению. В частности, гемоглобин (в буферном растворе) морской свинки-животного с относительно высоким уровнем насыщения селеном (аналогично человек и многие приматы) более устойчив к окислению, чем гемоглобин крысы [24, 25].

Вместе с тем, скорость индуцированных окислительных реакций в гемоглобине цельных эритроцитов существенно ниже, чем в гемоглобине в растворе, что объясняется наличием в эритроцитах эффективной антиокислительной системы, включающий в себе как «ловушки» радикалов (токоферон, супероксидисмутаза), так и перекись утилизирующий системы (каталаза, глутатион пероксидаза), а также глутатион редуктаза и метгемоглобин-редуктаза [26, 27]. Здесь особое место принадлежит хорошо изученному селензависимому механизму разложения перекисей водорода и липидов. Удельный вес этого механизма для животных с активным метаболизмом селена велик (крыса, хомяк) [28], что компенсирует относительно невысокую «загрузку» селеном гемоглобина [22, 23].

В целом, сравнивая полученные данные по влиянию

селена на окислительную стойкость по фиброину и гемоглобину можно заключить, что природное содержание селена в фиброине составляет 10^{-8} (0,04 мг/кг), при обогащении селеном оно может достигать 10^{-7} (0,27 мг/кг); для гемоглобина (в зависимости от вида) 10^{-6} (\approx 0,2-1,0 мкг/г). Однако, эти наноколичества селена оказывают

значительный AO эффект, что свидельствует о эффективности селензависимого механизма «ловушки» электронов в белках.

- [1]. Sunde R.A., Ann.Rev.N utr., 1990, V.10, P. 451-474
- [2]. Berry M.Y., Bann L., Larsen P.R., Nature, 1991, №31, P. 438-440
- [3]. Brown K.M., Arthur Y.R., Public. Health. Nutr., 2001, V.4, P.539-599
- [4]. Berk M.A., Levander O.A., Ann.Rev.Nutr., 1998, V.18, P. 878-883
- [5]. Абдуллаев Г.Б., Мамедов Ш. В., Гусейнов Т. М. и др. Доклады АН Аз. ССР, 1979, т. 30, стр. 62-65
- [6]. Beilstein M.A., Whanger P.D., J.Nutr. 1986, V.116, №9, P. 1701-1709
- [7]. Иоффе К. Г.. Клейн Г. А., Крахмалов В. А. и др., Шелк, № 3, стр. 38-41
- [8]. Бакиров М.Я., Шукюров Ю.Г., Щелк, 1981, № 2, стр. 13 –17
- [9]. Авт. Св-во 481279 (СССР), Стимулятор роста тутового щелкопряда, Абдуллаев Г.Б., Бакиров М.Я., Ализаде З.М. и др., опубликовано в БИ, 1975, №31
- [10]. Назаренко И.И., Кислова И.В., Гусейнов Т.М. и др. Журнал. Аналит. Химия. 1975, т.30. № 4, стр. 733-738
- [11]. Бучаченко А.Л., Коварский А.Л., Вассерман А. М. в кн., Успехи химии и физики полимеров, 1973, стр. 31-63
- [12]. Tappel A.L., Federation Proceeding, 1965, №24, P. 73-78
- [13]. Абдуллаев Г. Б., Бакиров М. Я., Мамедов Ш. В., Халилов З. Ш., Шукюров Ю.Г., Юсифов Э.Ю.Докл. АН Азерб. ССР 1978, т 34. № 11, стр. 20-24
- [14]. Бакиров М. Я., Мамедов Ш.В., Шукюров Ю.Г. Щелк, 1981, № 3, стр. 16-17
- [15]. Эмануель Н. М., Высокомолекулярные соединения, 1978, т. А 20 № 12, стр. 2653-2661

- [16]. Найман Н.Б., Лихтенштейн Г.И., Константинов Ю.С., Высокомолекулярные соединения, 1963, т 5, №11, стр. 1706-1710
- [17]. Тюзде Р., Каван Т., Физическая химия полимеров (пер. с японского), 1977, М., Химия, стр. 296
- [18]. Мухамедов И.М., Якубова Н. Я., Закиров И. З. и др. Щелк, 1970, № 2, стр. 38-42
- [19]. Тагер А.А., Физико-химия полимеров, 1978, М. Химия, стр. 544
- [20]. Гусейнов Т.М., Экология селена и его функциональная роль как природного антиокислительного фактора, Авт. дисс. на соиск. док. биол. наук, М., 1993, 45 с.
- [21]. Kumar and Clark, Clinical Medicine, 1998
- [22]. Whanger P.D.,Butler J.A., Tripp M.J., Amer. J. Clin. Nutr., 1982, V. 36, P. 15-23
- [23]. Butler J.A., Whanger P.D., J. Nutr, 1988, V.118, №7, P. 846-852
- [24]. Гусейнов Т.М., Мамедов Н.А., Гулиева Р.Т., Яхъяева Ф.Р., Молекулярные, мембранные и клеточные основы функционирования биосистем, 6-8 окт. 2004, Минск, Беларусь, стр 151-153
- [25]. Huseynov T.M., Mamedov N.A., Guliyeva R.T., Khalilova H.Kh., The effect of electrical discharge indused ozone on oxidation process in erythrocytes, 2nd International Conference on Technical and Physical Problems in Power Engineering, 6-8 September 2004, Tabriz-Iran, P.541-544
- [26]. Rachmilevich E.A., Br. J. Heamatol., 1975, V.47, №3, P.495-505
- [27]. Бойтлер Э., Нарушение метаболизма эритроцитов и гемолитическая анемия, 1981, стр. 253
- [28]. Tappel M.E., Chaudriere J., Tappel A.L., Comp. Biochem. Physiol., 1982, V.73b, P. 945-949