

Beynəlxalq Konfrans "Fizika-2005" International Conference "Fizika-2005" Международная Конференция "Fizika-2005"

İyun səhifə 7 - 9 June 2005 №70 page 253-259 Июнь стр.

Bakı, Azərbaycan

Baku, Azerbaijan

Баку, Азербайджан

ПОЛИМОРФНЫЕ ПРЕВРАЩЕНИЯ В Cu_{17x} Ag $_{12x}$ Se (x=0, 0.4, 0.5).

АСАДОВ Ю.Г., БАЙКУЛОВ Р.Б., ГАМИДОВА С.С., АЛИЕВ Ю.И.

Институт Физики НАН Азербайджана, г. Баку пр. Джавида 33 AZ-1143,physic@physics.ab.az

Синтезированы составы $Cu_{1\mp X}$ Ag $_{1\pm X}$ Se (x=0, 0.4, 0.5) и методом Бриджмена выращены Полиморфные превращения в этих кристаллах исследовались высокотемпературным дифрактометрическим методом. Показано. что кристаллы CuAgSe при комнатной температуре имеют орторомбическую структуру которая при 504 К превращается в ГЦК фазу. Изменение соотношения катионов (составы $Cu_{0.5}Ag_{1.5}Se$ и $Cu_{1.6}Ag_{0.4}Se$) приводит к тому. что при комнатной температуре кристаллы двухфазные и состоят из CuAgSe и Ag_2Se . Обе фазы одновременно при 540 К и 504 К соответственно превращаются в ГЦК фазу.

Кристаллы бинарных соединений Cu_2Se и Ag_2Se при повышение температуры претерпевают полиморфные превращения. Монокристаллы Cu_2Se при комнатной температуре имеют орторомбическую структуру с параметром решетки a=4.118 Å, b=7.028 Å, c=20.360 Å, Z=12, $\rho_x=7.49$ г/см³ [1]. При 407 К орторомбическая модификация превращается в ГЦК модификацию с параметром решетки a=5.840 Å [2].

Монокристаллы Ag_2Se при комнатной температуре имеют также орторомбическую структуру с параметрами решетки a=4.333 Å, b=7.062 Å, c=7.764 Å, Z=4, $\rho_x=8.148$ г/см³ [3]. При 430 К орторомбическая модификация превращается в ОЦК модификацию с параметром решетки a=4.978 Å, Z=2, $\rho_x=7.885$ г/см³. В этих кристаллах полиморфные превращения происходят обратимо м по типу монокристалл-монокристалл [4].

Соединение CuAgSe образуется при соотношении CuSe:Ag₂Se=1:1 по перитектической реакции при температуре 1033 К. Кристаллическая структура низкотемпературной модификации в [5] определена как тетрагональная с параметрами элементарной ячейки а=4.083 Å, c=6.30 Å, Z=2, пр.гр. D^7_{4h} — P4/nmm и ρ_x =7.91 г/см³. Позднее в [6] кристаллическая структура CuAgSe определена как ромбическая с параметрами элементарной ячейки а=4.105 Å, b=20.35 Å, c=6.31 Å, Z=10, ρ_x =7.88 г/см³. Последняя является сверхструктурой тетрагональной решетки. Параметр b_p ромбической решетки кратен пяти параметрамь b_t тетрагональной решетки (b_p =5 b_t). По данным [6] в ромбической структуре CuAgSe атомы Ag находятся в плоскостях перпендикулярных оси с. Около

каждого из них располагается 4 атома Ag на расстояниях 2.96 Å и 6 атомов Se на расстояниях 2.67 Å (4 Se), 3.59 Å (1 Se) и 3.64 Å (1 Se). Атомы Se образуют втянутые тетраэдры, в центре которых находятся атомы Cu. Расстояние Se-Se=3.03 Å, Cu-Se=2.06 Å -2.50 Å и наименьшее расстояние Cu-Ag=2.98 Å. B [7] показано, что орторомбическая модификация CuAgSe при 504 К превращается в высокотемпературную Γ ЦК модификацию с параметром элементарной ячейки a=6.082 Å.

В данной работе рассматриваются полиморфные превращения в кристаллах Cu_{17x} Ag_{12x} Se (x=0, 0.4, 0.5). Условия синтеза и выращивания монокристаллов указанных составов описаны в [8].

Высокотемпературные дифрактометрические исследования проводились на дифрактометре ДРОН-3М с приставкой URVT-2000, обеспечивающей вакуум 10^{-2} Па. Угловое разрешение записи составляло $\sim 0.1^{\circ}$. Дифрактограммы записывались непрерывно, углы дифракции определены методом измерений пиков интенсивности. В экспериментах ошибка определения углов отражений не превышала величины $\Delta \theta = \pm 0.02^{\circ}$. Во всех экспериментах использовалось CuK_{α} излучение ($\lambda_{\alpha} = 1.5418$ Å и Ni-фильтр).

I. CuAgSe.

При комнатной температуре (295 K) от кристаллического слитка CuAgSe размером $4\times4\times1$ мм в произвольной ориентации вырезали образцы, для которых в интервале углов $10^{\circ} \le 20 \le 90^{\circ}$ зафиксировали 11 четких дифракционных отражения (в табл. 1 они

отмечены звездочкой). Как показано в табл. 1 все совпадают зафиксированные отражения отражениями порошкограммы и точно индицируются на основе параметров орторомбической решетки. Надо отметить, что за исключением отражений от плоскости (060), (200), (024), (044), (084) и (283) дифракционные отражения индицируются на основе параметров тетрагональной решетки, которые в табл. 1 не приведены.

После записи дифракционных отражений при комнатной температуре включали печь и через каждые 50 К проводили контрольные записи. Температура образца перед началом каждой записи поддерживалась постоянной в течении 40 мин. Зафиксированные при комнатной температуре 11 дифракционных отражений до температуры 495 К остаются постоянными. При 545 К все 11 дифракционных отражений исчезают и в прежнем интервале углов фиксируются четыре новых отражения от плоскостей с индексами (111), (200), (311)высокотемпературной ГЦК модификации (см. табл. 1) с параметрами элементарной ячейки a=6.0823 Å, Z=4, пр. гр. Fm3m и $\rho_x = 7.389 \text{ г/cm}^3$.

	Таблица 1. Рентгенографические характеристики кристалла CuAgSe при различных температура										
TA Co.	θ	I/I_{\odot} $d_{\text{экс.}}(\mathring{A})$ Орторомбичес				T I	Параметры кристаллической				
№	Ø	1/10	$\mathbf{u}_{9KC}(\mathbf{A})$	d _{расч.} (Å)	hkl	Тэксп.К	решетки				
1	13° 08'	10	3.3916	3.3917	060						
2	14° 09'	40	3.1543*	3.1550	002]					
3	15° 27'	70	2.8938*	2.8902	150						
4	17° 05'	90	2.6248*	2.6277	151						
5	18° 04'	80	2.4852*	2.4828	112						
6	21° 12'	100	2.1319*	2.1312	152						
7	22° 04'	20	2.0519*	2.0525	200						
8	24° 24'	40	1.8661*	1.8640	113						
9	26° 42'	10	1.7158	1.7201	202						
10	29° 15'	60	1.5775*	1.5775	004						
11	29° 42'	10	1.5558	1.5589	024		Орторомбическая фаза				
12	30° 48'	70	1.5057	1.5067	044						
13	31° 40'	10	1.4684*	1.4687	114		a=4.1038 Å				
14	32° 12'	10	1.4466	1.4451	2 10 0		b=20.3496 Å				
15	34° 00'	20	1.3786	1.3847	154	295	c=6.3096 Å				
16	35° 06'	10	1.3407*	1.3406	084	293	_				
17	35° 54'	10	1.3146	1.3138	2 10 2		пр. гр. D ⁷ _{4h} -P4/nmm				
18	36° 42'	10	1.2900	1.2970	350						
19	37° 18'	10	1.2721	1.2721	283		Z=10				
20	38° 12'	20	1.2466	1.2468	0 10 4		ρ=7.885 г/см ³				
21	39° 47'	60	1.2047*	1.2042	115						
22	40° 12'	30	1.1943	1.1911	2 10 3						
23	42° 30'	10	1.1411	1.1452	313						
24	48° 00'	30	1.0374	1.0323	314						
25	49° 00'	10	1.0215	1.0211	420						
26	57° 00'	10	0.9192	0.9191	335						
27	58° 56'	10	0.9000	0.9022	266						
28	61° 12'	20	0.8797	0.8796	117						
29	63° 30'	20	0.8614	0.8605	157						
30	72° 31'	10	0.8082	0.8083	531						
1	12° 43'	30	3.5025	3.5041	111		ГЦК				
2	14° 43'	60	3.0338	3.0347	200	504	a=6.0694 Å				
3	21° 03'	100	2.1462	2.1459	220	304	пр. гр. Fm3m				
4	24° 54'	70	1.8311	1.8300	311		Z=4, ρ =7.436 г/cm ³				

Таблица Коэффициенты теплового расширения низкотемпературной орторомбической высокотемпературной ГЦК модификации CuAgSe.

Температура. К	$\alpha_{[100]}10^{-6}K^{-1}$	$\alpha_{[010]}10^{\text{-}6}\text{K}^{\text{-}1}$	$\alpha_{[001]} 10^{-6} \text{K}^{-1}$	$\overline{\alpha} = \frac{\alpha_{[100]} + \alpha_{[010]} + \alpha_{[001]}}{3} \cdot 10^{-6} K^{-1}$
295 - 345	34.115	61.721	35.184	43.673
295 - 395	31.678	81.378	43.584	52.213
295 - 445	33.790	70.173	42.052	48.672
295 - 495	32.165	65.063	44.534	47.254
504 - 545	51.839			51.839
504 - 595	50.696			50.696

Для определения температуры равновесия между низко- и высокотемпературными модификациями CuAgSe счетчик дифрактометра был установлен на максимуме интенсивности отражения от плоскости орторомбической модификации, которая исчезает при полном превращении ГЦК модификацию и наоборот, восстанавливается при охлаждении. Этим способом уточнена температура превращения, которая равна 504±1 К. Превращения в AgCuSe обратимые и происходят по монокристалл-монокристалл.

На рис.1 приведены температурные зависимости параметров решетки (а) и плотности орторомбической и ГЦК модификации AgCuSe. Как видно из рис.1, все три параметра орторомбической и параметр а ГЦК модификаций в зависимости от температуры растут линейно. При превращении орторомбической модификации высокотемпературную ГЦК модификацию, плотность кристалла CuAgSe скачком уменьшается на $\Delta \rho_x$ =0.28 г/см³. Несмотря на это, при кратном превращении, в дифракционных отражений модификаций изменений не наблюдается.

Из температурной зависимости параметров кристаллической решетки орторомбической и ГЦК модификации в интервалах температур 295-595 К

рассчитаны коэффициенты линейного расширения (табл.2).

Как видно из таблицы 2, коэффициенты линейного расширения орторомбической модификации кристаллографическому по направлению [010] сильно отличаются от [100] и [001]. Отсюда следует, что одной из причин температурной нестабильности низкотемпературной модификации CuAgSe является существование анизотропного теплового расширения. Другой причиной можно считать то, что полиморфные превращения в соединениях Cu₂Se и Ag₂Se отразились и на тройном соединении. Кристаллографические данные и температура полиморфных превращений в бинарных соединениях Cu₂Se и Ag₂Se приведены в табл. 3.

Как видно из табл. 3, температуры равновесия между низкотемпературными орторомбическими и высокотемпературными ГЦК (Cu_2Se) и ОЦК (Ag_2Se) модификациями одинаковы. В тройном соединении CuAgSe, т.е. $\frac{1}{2}(Cu_2Se\cdot Ag_2Se)$, температура равновесия между низкотемпературной орторомбической и высокотемпературной ГЦК модификациями на 96 К выше, чем в бинарных соединениях Cu_2Se и Ag_2Se .

Таблица 3. Кристаллическая решетка модификаций в Cu₂Se и Ag₂Se.

										2 02		
		Орторс	ая м	одификация	I	Температ	Ку					
Соеди-	a, Å	b, Å	c, Å	Z	Пространс твенная группа	Плотн ость г/см ³	ура превра- щения. К	a, Å	Z	Пространст венная группа	Плотность г/см ³	Литера- тура
Cu ₂ Se	4.118	7.032	20.381	12	ı	6.954	407	5.840	4	O ⁵ _h -Fm3m	6.869	[5], [6]
Ag ₂ Se	4.333	7.062	7.764	4	D ² ₂ -P222 ₁	8.237	408	4.983	2	O ⁹ _h -Im3m	7.908	[7], [8]

Надо отметить, что значение параметров решетки низкотемпературной орторомбической модификации CuAgSe приблизительно соответствует значениям параметров решетки низкотемпературной орторомбической модификации Cu₂Se. кристаллической структуре Cu_2Se атомы Cu статистически распределены в тетраэдрических пустотах, образовавшихся атомами Se, а в структуре CuAgSe, атомы Ag располагаются в плоскостях, перпендикулярных оси с и атомы Cu, как в Cu₂Se, располагаются в центре тетраэдров, образовавшихся атомами Se. Эти структурные образовавшиеся дополнительные связи Сu-Ag и Ag-Se также является причиной повышения температуры превращения в CuAgSe (T_o=504 K) по сравнению с $Cu_2Se (T_0=407 K)$ и $Ag_2Se (T_0=408 K)$.

II. Cu_{0.5}Ag_{1.5}Se.

При комнатной температуре от кристаллического образца Cu_{0.5}Ag_{1.5}Se в виде пластинки размером $1\times4\times5$ интервале углов 10°≤2θ≤90° зафиксировано 27 дифракционных отражений (табл.4). точного индицирования Для дифракционных ланных $Cu_{0.5}Ag_{1.5}Se$, экспериментальные значения межплоскостных расстояний d_i сравнивались с межплоскостными расстояниями рассчитанными на основе параметров

кристаллической решетки низкотемпературных модификаций CuAgSe, Cu₂Se и Ag₂Se.

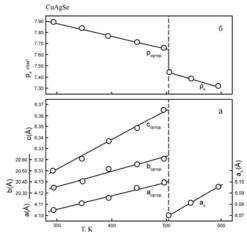


Рис. 1. Температурная зависимость параметров кристаллической решетки (а) и плотности (б) модификаций CuAgSe.

Как видно из таблицы 4, экспериментальные значения d_i межплоскостных расстояний $Cu_{0.5}Ag_{1.5}Se$ за исключением d=2.4812 и d=1.8625 удовлетворительно совпадают с рассчитанными значениями межплоскостных расстояний Ag_2Se с параметрами

а=4.333 Å, b=7.062 Å, c=7.764 Å. Указанные выше два межплоскостных расстояния, а также ряд других, индицируются также на основе параметров элементарной ячейки низкотемпературной орторомбической модификации CuAgSe с параметром решетки а=4.105 Å, b=20.350 Å, c=6.310 Å. В дифракционных картинах зафиксированных при комнатной температуре до 423 К изменений не происходит. При 423 К в прежнем интервале углов

фиксируется 14 отражений, которые также сохранили двухфазность. При температуре 488±1 К все отражения исчезают и в прежнем интервале углов фиксируются четыре новых отражения с индексами (200), (220), (311) и (400), которые принадлежат высокотемпературной ГЦК модификации с параметром элементарной ячейки а=6.1068 Å.

Таблица 4. Рентгенографические характеристики кристалла $Cu_{0.5}Ag_{1.5}Se$ при различных температурах.

T, K	θ	I/I _o	a &	Ag ₂ :	Se	CuA	Se	Параметры элементарной							
		DI ^D	d _{эκсπ} A	d _{pace} Å	hkl	d _{pace} Å	hkl	ячейки, Å							
	11° 27'	28	3.8818	3.8820	022										
	11° 46'	24	3.7808	3.7836	101										
	13° 22'	20	3.3358	3.3351	111										
	13° 52'	12	3.2174	3.2142	021										
	16° 22'	28	2.7366	2.7372	120										
	16° 45'	88	2.6749	2.6758	112			Ag₂Se							
	17° 09'	94	2.6141	2.6121	022			Орторомбическая							
	17° 23'	100	2.5809	2.5815	121			a=4.333							
	18° 06'	63	2.4812	-	-	2.4828	112	b=7.062							
	18° 30'	44	2.4296	2.4300	013			c=7.764							
	20° 09'	35	2.2377	2.2370	122			Z=4							
	21° 20'	84	2.1190	2.1194	113			пр.гр. Р212121							
	21°51'	20	2.0712	2.0712	210			р _х =8.24 г/см ³							
293	21° 53'	32	2.0684	2.0685	130										
	22° 31'	30	2.0128	2.0128	032	2.0120	220								
	22° 39'	45	2.0018	2.0012	211			<u>CuAgSe</u>							
	24° 27'	20	1.8625	-	-	1.8640	113	Орторомбическая							
	25° 03'	5	1.8207	1.8255	132	1.8223	241	a=4.105							
	25° 33'	10	1.7874	1.7875	041	1.7875	063	b=20.350							
	26° 39'	8	1.7188	1.7182	114	1.7205	202	c=6.310							
	29° 39'	12	1.5583	1.5615	231	1.5589	024	Z=10							
	31° 45'	15	1.4650	1.4618	105	1.4625	1.10.3	р _ж =7.78 г/см ³							
	32° 57'	10	1.4174	1.4163	214	1.4130	243								
	33° 54'	20	1.3823	1.3823	143	1.3847	154								
	38° 21'	10	1.2424	1.2424	215	1.2468	0.10.4								
	39° 35'	8	1.2098	1.2099	243	1.2042	115								
	40° 16'	20	1.1926	1.1920	153	1.1911	2.10.3								
	14° 38'	40	3.0530	3.0534	200			ГЦК							
523	20° 55'	80	2.1594	2.1591	220			a=6.1184 Z=4							
323	24° 45'	100	1.8412	1.8413	311			7—4 пр.гр. Fm3m							
	30° 19'	60	1.5267	1.5267	400			р _ж =7.90 г/см ³							

Таблица 5. Коэффициенты теплового расширения низко- и высокотемпературной модификации $Cu_{0.5}Ag_{1.5}Se$.

Модификация	Температура, К	α _{μοση} 10-'K-1	α ₁₀₁₀₁ 10-4K-1	α ₀₀₁₁ 10-4K-1	$\overline{\alpha} = \frac{\sum \alpha_i}{3} \cdot 10^{-6} K^{-1}$
Ag ₂ Se	293-373	19.04	39.65	36.71	31.80
	293-423	37.28	5.99	103.83	49.03
	293-473	40.13	12.67	96.96	49.92
CuAsSe	293-373	15.23	80.34	-6.14	29.81
	293-423	37.48	169.08	8.53	71.70
	293-473	33.56	120.88	17.26	57.23
гцк	523-573	37.99			37.99

При комнатной температуре двухфазные образцы $Cu_{0.5}Ag_{1.5}Se$ при повышенной температуре становятся однофазными со структурой высокотемпературной модификации CuAgSe. В противном случае при 488 К низкотемпературная орторомбическая фаза Ag_2Se превращалась бы в OUK, а низкотемпературная орторомбическая фаза CuAgSe при 504 К в ΓUK модификацию. Следовательно, выше 504 К образец состоял бы из двух $OUK+\Gamma UK$ фаз.

На рис.2 приведены температурная зависимость параметров решетки существующих фаз $Cu_{0.5}Ag_{1.5}Se$. Как видно из рис.2, значения параметров <u>а</u> и <u>с</u> Ag_2Se и

параметр <u>а</u> CuAgSe в зависимости от температуры растет линейно, а параметр <u>b</u> Ag_2Se и параметры <u>b</u> и <u>c</u> CuAgSe отклоняются от линейности.

Из температурной зависимости параметров решетки рассчитаны коэффициенты теплового расширения обеих орторомбических и кубических фаз $Cu_{0.5}Ag_{1.5}Se$, которые приведены в табл.5. Анизотропия теплового расширения по основным кристаллографическим направлениям является одной из основных причин температурной нестабильности кристаллической структуры в которой с повышением температура происходит превращение структуры с

низкой симметрией в кубическую структуру имеющую более высокую симметрию. Превращение обратимое и происходит по типу монокристаллмонокристалл.

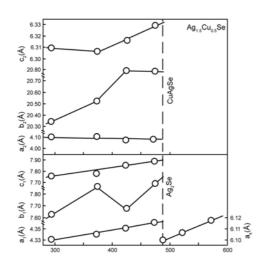


Рис.2 Температурная зависимость параметров решетки существующих фаз в $Cu_{0.5}Ag_{1.5}Se$.

III. Cu_{1.6}Ag_{0.4}Se.

При комнатной температуре (293 K) от кристаллического слитка $Cu_{1.6}Ag_{0.4}Se$ в произвольной ориентации вырезали образцы (размером $2\times4\times6$ мм), для них в интервале углов $10^{\circ}\le20\le90^{\circ}$ зафиксированы 18 четких дифракционных отражений (табл.6).

Как видно из табл.6 из 18 отражений 14 индицируются на основе параметров ромбической фазы CuAgSe, а оставшиеся 4 и 7 из 14 индицируются также на основе параметров ромбической фазы Ag_2Se . Отсюда следует, что кристаллы $Cu_{1.6}Ag_{0.4}Se$ при комнатной температуре двухфазные, как и кристаллы $Cu_{0.5}Ag_{1.5}Se$.

После записи дифракционных отражений при комнатной температуре не изменяя ориентации кристалла, включали печь и через каждые 50 К проводили контрольные дифракционные записи. Температура образца перед началом каждой записи поддерживалась постоянной в течении 50 минут.

В интервале температур 293-523 К в числах и интенсивностях дифракционных отражений изменений не происходит. При 573 К все дифракционные отражения исчезают и в прежнем интервале углов фиксируются 7 новых отражений, принадлежащих высокотемпературной ГЦК фазе с параметром а=5.8958 Å.

Для определения температуры равновесия между низко- и высокотемпературными фазами $Cu_{1.6}Ag_{0.4}Se$ счетчик дифрактометра был установлен на максимуме интенсивности отражения от плоскости (0 10 0) ромбической модификации CuAgSe, которое исчезает при полном превращении в ГЦК модификацию и наоборот, восстанавливается при охлаждении. Этим способом уточнена температура превращения, которая равна 540 ± 2 К. Превращение обратимое и происходит по типу монокристалл-поликристалл.

Таблица 6. Рентгенографические характеристики кристалла $Cu_{1.6}Ag_{0.4}Se$ при различных температурах.

T, K	θ	I/I _o	dэксп	CuA		Ag_2		Параметры элементарной					
1, K	U	1/10	Å	d _{расч} Å	hkl	d _{расч} Å	hkl	ячейки, Å					
	13° 08'	60	3.3916	3.3917	060								
	15° 28'	40	2.8916	2.8902	150			Ромбическая					
	17° 09'	50	2.6143			2.6121	022	фаза CuAgSe					
	18° 05'	40	2.4836	2.4828	112			a=4.1038					
	20° 19'	80	2.2203	2.2207	171	2.2219	103	b=20.3496					
	21° 21'	40	2.1175			2.1194	113	c=6.3096					
	22° 15'	100	2.0362	2.0350	0 10 0			Z=10					
	24° 39'	10	1.8484			1.8466	220	пр.гр. D ⁷ _{4h} – P4/nmm					
293	26° 03'	90	1.7554	1.7560	260			ρ _x =7.885 г/см ³					
293	29° 21'	10	1.5728	1.5739	173			Ромбическая					
	30° 40'	10	1.5122			1.5166	015	фаза Ag ₂ Se					
	31° 51'	30	1.4609	1.4625	0 10 3	1.4618	105	a=4.333					
	35° 09'	10	1.3390	1.3406	084,311	1.3379	224	b=7.062					
	39° 57'	20	1.2006	1.2042	115,352			c=7.764					
	40° 27'	20	1.1882	1.1876	135	1.1885	225	Z=4					
	42° 39'	10	1.1378	1.1309	333	1.1358	160	пр.гр. Р2₁2₁2 ₁					
	48° 21'	10	1.0317	1.0323	314	1.0322	412	$\rho_{x}=8.237 \text{ г/cm}^{3}$					
	51° 33'	10	0.9844	1.9823	460	0.9841	430	,					
	15° 10'	50	2.9469	2.9479	200								
	21° 42'	30	2.0852	2.0845	220			ГЦК					
	25° 42'	45	1.7775	1.7777	311			a=5.8958					
573	26° 56'	100	1.8021	1.7020	222			пр.гр. Fm3m					
	31° 32'	60	1.4740	1.4740	400			Z=4					
	34° 45'	40	1.3525	1.3526	331			ρ _x =7.250 г/см ³					
	35° 47'	60	1.3182	1.3184	420								

Таблица 7. Коэффициенты теплового расширения низко- и высокотемпературной модификации Cu_{1.6}Ag_{0.4}Se.

Состав	Температура, К	$\alpha_{[100]}10^{-6}K^{-1}$	$\alpha_{[010]}10^{\text{-}6}K^{\text{-}1}$	$\alpha_{[001]}10^{\text{-6}}\text{K}^{\text{-1}}$	$\overline{\alpha} = \frac{\sum \alpha_i}{3} \cdot 10^{-6} K^{-1}$
	293-373	3.046	28.502	16.641	16.063
CuAgSe	293-473	21.931	28.174	-7.572	14.178
	293-523	51.914	39.078	1.585	30.859
	293-373	19.040	47.437	1.932	22.803
Ag ₂ Se	293-473	35.772	50.348	6.583	30.901
	293-523	9.101	67.846	-2.688	24.753
ГЦК	573-673	12.551			12.551

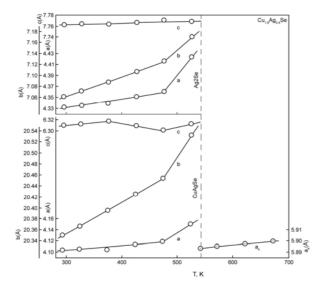


Рис.3 Температурная зависимость параметров решетки существующих фаз в $Cu_{1.6}Ag_{0.4}Se$.

На рис.3 приведены температурные зависимости параметров решетки обеих ромбических и ГЦК фаз $Cu_{1.6}Ag_{0.4}Se$. Как видно из рис.3 при температуре 473 К параметры фазы кристаллизующейся в структуре CuAgSe резко отклоняются от линейности, параметры \underline{a} и \underline{b} фазы кристаллизующейся в структуре Ag_2Se , также при 473 К отклоняются от линейности, а параметр \underline{c} до температуры превращения сохраняет линейность. Отклонения параметров от линейности при 473 К обеих ромбических фаз в основном связано с перераспределением двух сортов катионов.

При превращении низкотемпературной ромбической фазы CuAgSe и Ag_2Se в единую ГЦК фазу разница плотности составляет $\Delta \rho_1$ =0.70 и $\Delta \rho_2$ =0.47 г/см³. Как было сказано, это приводит к монокристалл-поликристалл превращениям. Из температурной зависимости параметров кристаллической решетки обеих ромбических и ГЦК фазы в интервале температур 293-673 К рассчитаны коэффициенты теплового расширения (табл. 7).

Таблица 8. Кристаллическая структура существующих модификаций.

Состав	Модифи-	Параметры решетки				Плотн. р г/см ³	Теми. Превр.	Модифи-	Параметры решетки		Плотн. р г/см³
	кация	a, Å	ъ, Å	c, Å	Z	ртисм	K T	киция	a, Å	Z	p 17CM
CuAgSe	Ромб.	4.1038	20.3496	63096	10	851	504	гцк	6.0694	4	8.02
Cu ₀ sAg ₁ sSe	Ag₂Se Pomo	4333	7.062	7.764	4	824	400	F7116	6.1068	4	6.65
	CuAgSe Ромб.	4.105	20.350	6310	10	7.78	488	гцк			
	Ag₂Se Ромб.	4333	7.062	36.458	4	824	540	гцк	5.8958	4	725
Cu₁ 6Ago 4Se	CuAgSe Ромб.	4.103	20.349	62994	10	7.89	540				

Как видно из табл.7, коэффициенты теплового расширения рассчитанные из температурной решетки, зависимости параметров кристаллографическим направлениям [100] и [010] намного сильнее чем в направлении [001]. Даже в направлении [001] в структуре CuAgSe при 473 К и в Ag₂Se при 523 К тепловое расширение становится отрицательным. Одной из причин нестабильности двухфазного кристалла Cu₁₆Ag₀₄Se анизотропия коэффициента теплового расширения.

В табл.8 приведены кристаллические параметры низко- и высокотемпературных модификаций и температуры структурных превращений

 Cu_{17X} Ag_{12X} Se (x=0, 0.4, 0.5). Изменение количество катионов в одном случае за счет Cu ($Cu_{0.5}Ag_{1.5}Se$), а в другом Ag ($Cu_{1.6}Ag_{0.4}Se$), не зависимо от условий синтеза и методов выращивания, приводит монокристаллы к двухфазному состоянию при комнатной температуре: I — принимает ромбическую структуру CuAgSe, а II — ромбическую структуру Ag_2Se . При повышении температуры обе фазы одновременно превращаются в единую Γ ЦК фазу. При охлаждении Γ ЦК фаза распадается на две фазы которые существуют при комнатной температуре.

- [1]. Stevels A. L. N., Jellinek F. Phase transitions in copper chalcogenides. The copper-selenium sysem. // Rec. trav. Chim., 1971, v. 90, №3, p.273-283.
- [2]. Asadov Yu. G., G. A. Jabrailova, Investigation of structural transformations in Cu₂Se. // Kristal und Technik, 1973, 8, 4, p.499-505.
- [3]. Пинскер З. Г., Чжоу Цзин-лян, Иманов Р. М., Лапидус К. Л., Определение кристаллической структуры низкотемпературной фазы Ag₂Se. // Кристаллография, 1965, т. 10, вып. 3, с. 275-283.
- [4]. Yu.G. Asadov, G.A. Jabrailova, Investigation of polymorphic transformations in Ag₂Se. // Phys. Stat. Sol., 1972, (a), <u>12</u>, k13-k17.
- [5]. Earley J. W., Description and synthesis of the selenide minerals // Amer. Miner., 1950, v. 35, p. 345-347.
- [6]. Frueh A. J., Czamanke G. K., Knight C. H., The crystallography of eucairite CuAgSe // Z. Kristallogr., 1957, B. 108, p. 389-396.
- [7]. Кязимов Ш. К., Г. Ш. Гасанов, Ю. Г. Асадов, Структурные переходы в CuAgSe. // Докл. АН. Азерб. ССР, 1986, том XII, №11, с.33-36.
- [8]. Asadov Yu. G., Nazirov V. I., Jabrailova G.A., J. Cryst. Growth, 1972, 15, 1.