

## ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА МОНОКРИСТАЛЛОВ РbTe и Pb<sub>1-x</sub>Mn<sub>x</sub>Te В МАГНИТНОМ ПОЛЕ

## АГАЕВ З.Ф., БАГИЕВА Г.З., АЛЛАХВЕРДИЕВ Э.А., ИСМАЙЫЛОВА Р.А., ЮСИФОВ В.В., АБДИНОВ Д.Ш.

Институт Физики НАН Азербайджана, Баку AZ-1143, пр. Джавида 33

Приведены результаты исследований по влиянию магнитного поля на  $\rho$ ,  $R_x$  и  $\alpha$  монокристаллов  $Pb_{1,x}Mn_xTe$ , прошедших и не прошедших отжиг после их выращивания. Полученные результаты объяснены существованием в этих кристаллах двух валентных зон и изменением расстояний между этими зонами с температурой и концентрацией атомов марганца.

Кристаллы РbTe и твердые растворы на его основе используются для изготовления различных приборов, в частности термоэлектрических устройств и приемников инфракрасного излучения и поэтому интенсивно исследуются [1]. Однако, в основном, исследования проведены в системах аналогов, таких как PbTe-SnTe, PbTe-GeTe и т.д. [2,3], в которых наблюдается уменьшение ширины запрещенной зоны при образовании твердого раствора. В последние годы интенсивно исследуются полумагнитные твердые растворы на основе PbTe, в том числе Pb<sub>1-x</sub>Mn<sub>x</sub>Te [4]. При образовании указанного твердого раствора сильно возрастает ширина запрещенной зоны E<sub>o</sub>(dE<sub>o</sub>/dx=3,4 эВ) и в магнитном поле происходит изменение энергетического спектра носителей заряда благодаря их обменному взаимодействию c электронами магнитных ионов марганца [5]. В связи с этим исследования влияния магнитного поля на физические свойства монокристаллов Pb<sub>1-x</sub>Mn<sub>x</sub>Te представляют определенный научный и практический интерес.

В данной статье приводятся данные по влиянию магнитного поля на удельное сопротивление  $\rho$ , коэффициенты Холла  $R_x$  и тэрмоэдс  $\alpha$  моно-кристаллов  $Pb_{1,x}Mn_xTe$  (0 $\leq x \leq 0,4$ ) при ~77 К и 300 К.

На рис. 1 представлены данные по зависимости  $\Delta \rho / \rho_0$  (магнетосопротивление) от индукции магнитного поля В для различных образцов монокристаллов PbTe до и после отжига, соответственно. Кривые 2 и 3 на рис. 1 (*a*) соответствуют образцам, обладающими при 77 К *p* – типом проводимости, а кривая 3 *n* – типом проводимости. После отжига при ~ 400<sup>0</sup> С в

атмосфере спектрально чистого аргона в течение ~120 часов все образцы обладали *n* – типом проводимости.

В таблице 1 приведены исходные параметры исследованных образцов. Концентрация и подвижность электронов и дырок вычислены из данных коэффициента Холла (R<sub>x</sub>), измеренного при B=0,55 Тл по формуле для одного типа носителей заряда.

Из данных рис. 1 и таблицы 1 следует, что в образцах *p*- типа проводимости магниторезистивный эффект при  $B \le 0,55$  Тл незначителен (в порядке ~ 2 – 3%). Образцы же с *n* – типом проводимости обладают достаточно высоким магниторезистивным эффектом. Это обусловлено, в первую очередь, высокой подвижностью электронов относительно дырок в образцах PbTe. После отжига все образцы становятся полупроводниками с *n* – типом проводимостью и в них усиливается магниторезистивный эффект.

В PbTe существует вторая валентная зона с относительно большой эффективной массой (около  $1,2m_0$ ). Энергетический зазор между краями зон легких и тяжелых дырок при при 0К равен ~0,17 эВ и с ростом температуры уменьшается со скоростью  $4 \cdot 10^{-4}$  эв/К так, что расстояние между краями зоны проводимости и зоны тяжелых дырок остается неизменным. При температуре ~450К энергетический зазор между валентными зонами исчезает (при ~ 300К он равен ~ 0,04 эВ), а при дальнейшем росте температуры край зоны тяжелых дырок находится выше края зоны легких дырок и ширина запрещенной зоны, равная теперь энергетическому расстоянию между краями зоны проводимости и зоны тяжелых со скоростье така.

дырок, не зависит от температуры и равна ~0,36 эВ.

С введением атомов марганца в PbTe происходит расширение ширины запрещенной зоны, т.е. атомы Mn влияют на  $E_g$  так же, как и температура, и  $E_g$  в этом случае растет за счет уменьшения зазора между краями зон легких и тяжелых дырок[6]. Таким образом, с введением Mn в PbTe растет концентрация тяжелых дырок и средняя эффективная масса дырок. В результате в составах  $Pb_{1-x}Mn_x$ Te магниторезистивный эффект становится меньше (в порядке ошибки эксперимента), чем в образцах PbTe.

В области слабых магнитных полей ( $\mu^2 B^2 << 1$ ) с ростом поля коэффициент Холла уменьшается пропорционально  $B^2$  и эта зависимость выражается соотношением [7]:

$$R_{B} = R_{0} \left[ 1 - M_{d}^{2} B^{2} \left( A^{2} - 2 C - \frac{D}{A} \right) \right]$$

здесь



где т - время свободного пробега носителей заряда.

Видно, что коэффициент пропорциональности в зависимости  $R_x$  от В зависит от квадрата подвижности и механизма рассеяния. Следовательно, исследуя зависимость  $R_x$  от В при слабых полях можно получить информацию о механизме рассеяния носителей заряда.

На рис. 2 представлены зависимости  $R_x$  от квадрата индукции магнитного поля ( $B^2$ ) при ~77К (рис.2.*a*) и ~300К (рис. 2.*b*) для образцов, прошедших и не прошедших термообработки.

В таблице 2 приведены значения  $R_0$  и коэффициента пропорциональности  $tg \varphi = M^2 \left( A^2 - 2C + \frac{D}{A} \right)$ . Из этих данных следует, что для всех исследованных образцов

РbTе выполняется зависимость  $R_x \sim B^2$  при магнитных полях до ~0,55 Tл. При ~77К значения tg $\varphi$  для образцов больше, чем при 300К. Кроме того, после термообработки значение tg $\varphi$  при ~77К несколько растет. Рост tg $\varphi$  при уменьшении температуры от 300 до 77К обусловлен ослаблением рассеяния носителей заряда от колебаний решетки и усилением рассеяния на ионизированных точечных дефектах.



Рис.1. Зависимость Δρ/ρ<sub>0</sub> от индукции магнитного поля В, для образцов PbTe, не прошедших (*a*) и прошедших (*b*) термическую обработку при 400<sup>0</sup>С в течении 120 часов в атмосфере спектрально чистого аргона.



Рис. 2. Зависимость коэффициента Холла в магнитном поле от квадрата индукции магнитного поля при 77К(а) и 300К(б) для различных образцов PbTe, не прошедших (кривые 1 – 4) и прошедших (кривые 1' - 3') отжиг.

Таблица 1

Электрофизические параметры образцов PbTe до и после термообработки.

| Образцы РbТe | Тип проводимости | 77К                                    |            |                                       |                                                 |                | зодимости | 300К                              |            |                                       |                                                 |                |
|--------------|------------------|----------------------------------------|------------|---------------------------------------|-------------------------------------------------|----------------|-----------|-----------------------------------|------------|---------------------------------------|-------------------------------------------------|----------------|
|              |                  | σ<br>Ом <sup>-1</sup> см <sup>-1</sup> | а<br>мкВ/К | R <sub>x</sub><br>см <sup>3</sup> /Кл | <i>n</i> ×10 <sup>-18</sup><br>см <sup>-3</sup> | μ<br>см²/(В·с) | Тип пров  | Ом <sup>-1</sup> см <sup>-1</sup> | α<br>мкВ/К | R <sub>x</sub><br>см <sup>3</sup> /Кл | <i>n</i> ×10 <sup>-18</sup><br>см <sup>-3</sup> | μ<br>см²/(В·с) |
| <b>№</b> 1   | п                | 2603                                   | 114,4      | 0,95                                  | 6,6                                             | 2473           | п         | 58.8                              | 270.5      | 2.5                                   | 2.5                                             | 147            |
| N <u>⁰</u> 2 | р                | 3,5                                    | 144,6      | 13                                    | 0,5                                             | 45,5           | р         | 221.5                             | 277        | 1.95                                  | 3.2                                             | 432            |
| <u>№</u> 3   | р                | 21.3                                   | 31.9       | 3.9                                   | 1.61                                            | 83.1           | р         | 55.9                              | 275.2      | 2                                     | 3.14                                            | 111.8          |

До термообработки

## После термообработки

| Образцы РbTe | Тип проводимости | 77К                               |            |                     |                                                 |                | водимости | 300К                              |            |                                       |                                                 |                |
|--------------|------------------|-----------------------------------|------------|---------------------|-------------------------------------------------|----------------|-----------|-----------------------------------|------------|---------------------------------------|-------------------------------------------------|----------------|
|              |                  | Ом <sup>-1</sup> см <sup>-1</sup> | а<br>мкВ/К | см <sup>3</sup> /Кл | <i>n</i> ×10 <sup>-18</sup><br>см <sup>-3</sup> | μ<br>см²/(В·с) | Тип прон  | Ом <sup>-1</sup> см <sup>-1</sup> | α<br>мкВ/К | R <sub>x</sub><br>см <sup>3</sup> /Кл | <i>n</i> ×10 <sup>-18</sup><br>см <sup>-3</sup> | μ<br>см²/(В·с) |
| <b>№</b> 1   | п                | 443.6                             | 73.2       | 2.3                 | 2.73                                            | 1019           | п         | 42                                | 162.5      | 1.7                                   | 3.7                                             | 71.4           |
| <u>№</u> 2   | n                | 926.6                             | 66         | 1.3                 | 4.8                                             | 1204           | n         | 80                                | 99         | 1.2                                   | 5.23                                            | 96             |
| <u>№</u> 3   | n                | 1157                              | 80.7       | 1.6                 | 3.93                                            | 1851           | n         | 99                                | 143.4      | 1.5                                   | 4.2                                             | 148.5          |

При термообработке происходит диффузия и равномерное распределение избыточных атомов теллура по всему объему и их частичное улетучивание (несмотря на то, что отжиг проводится в атмосфере аргона), вследствие чего образцы становятся полупроводниками с *n* – типом проводимости. Образовавшиеся дефекты усиливают процесс рассеяния носителей заряда от ионов, и соответственно, значение tgo при 77 К растет.

На рис. 3 показано влияние магнитного поля на коэффициент термоэдс  $\alpha$  монокристаллов PbTe при температуре ~ 100 К. Образцы, не прошедшие термообработку при ~ 100 К обладают p – типом проводимости. Образец №3 до 100 К обладает n – типом проводимости. Из рис. 3 также следует, что заметное влияние магнитного поля на  $\alpha$  наблюдается только в случае образца PbTe №3, не прошедшего термообработку. В других случаях изменение  $\alpha$  под действием магнитного поля не превышает 5–6 %. При температуре 300 К изменение  $\alpha$  в магнитном поле в порядке ~2-3% (порядка погрешности эксперимента).

При воздействии на образец магнитного поля, перпендикулярного направлению движения электронов, носители заряда отклоняются под действием силы Лоренца. При этом, носители которые слабее рассеиваются и поэтому имеют большее время свободного пробега в магнитном поле, отклоняются больше, чем сильно рассеивающиеся носители. В образцах PbTe при 100 К преимущественный вклад имеет рассеяние электронов и дырок на акустических фононах, которому быстрые носители подвержены в большей степени, чем медленные. Поэтому магнитное поле в основном отклоняет носители с меньшей энергией, и их вклад в ток уменьшается.



Рис. 3. Зависимость коэффициента тэрмоэдс от индукции магнитного поля для различных образцов РbTe n – (кривая 1) и p – типов (2, 3, 1', 2'), не прошедших термическую обработку. Кривые 1 – 3 при 77К, кривые 1' – 2' при 300К.

Таблица 2

| Образцы РbTe |                       | 77                | νK                    |                      | 300К                  |                   |                         |                |  |
|--------------|-----------------------|-------------------|-----------------------|----------------------|-----------------------|-------------------|-------------------------|----------------|--|
|              | До термос             | обработки         | После терм            | ообработки           | До термос             | обработки         | После<br>термообработки |                |  |
|              | tgφ                   | R <sub>0</sub>    | tgφ                   | R <sub>0</sub>       | tgφ                   | R <sub>0</sub>    | tgφ                     | R <sub>0</sub> |  |
| <b>№</b> 1   | -4·10 <sup>-7</sup>   | 10 <sup>-6</sup>  | -7·10 <sup>-7</sup>   | 2,4.10-6             | -2,6.10-7             | 2,6.10-6          | -4,1·10 <sup>-7</sup>   | 1,7.10-6       |  |
| N <u>⁰</u> 2 | -4,3·10 <sup>-7</sup> | 2,6.10-5          | -8,2·10 <sup>-7</sup> | 1,5.10-5             | -5,2·10 <sup>-7</sup> | 1,8.10-5          | -2·10 <sup>-7</sup>     | 1,2.10-5       |  |
| N <u>∘</u> 3 | -1,1.10-6             | $4 \cdot 10^{-6}$ | -9,3·10 <sup>-6</sup> | 9,3·10 <sup>-6</sup> | -6·10 <sup>-6</sup>   | $2 \cdot 10^{-6}$ | -6·10 <sup>-6</sup>     | 1,6.10-6       |  |

Значения R<sub>0</sub> и tgφ для различных образцов PbTe.

Подвижность носителей заряда с большей энергией в исследованных образцах PbTe мала, влияние магнитного поля на среднюю энергию носителей и следовательно, на коэффициент термоэдс невысокое. Судя по значению коэффициента Холла R<sub>x</sub>, образец

№3 обладает более совершенной структурой и подвижностью дырок при ~ 100 К. Этим и обусловлено заметное (до ~ 18%) увеличение α в этом образце под действием магнитного поля.

- [1]. Гавалешко Н.П., Горлей П.Н., Шендеровский В.Л. Узкозонные полупроводники. Получение и физические свойства. Киев.: Наукова Думка. 1984. 287 с.
- [2]. Патли Е. Сульфид, селенид и теллурид свинца. В сб. Материалы используемые в полупроводниковых приборах. Под ред. К.Хогарта. М.: Мир.1968. С. 99-143.
- [3]. Равич Ю.И. О свойствах халькогенидах свинца. В сб. Материалы используемые в полупроводниковых приборах. Под ред. К.Хогарта. М.: Мир.1968.

C. 273-301.

- [4]. Gorska M., Anderson I.R. Phys. Rew. B. 1988. V.38.№13. P. 9120-9126.
- [5]. Засавицкий И.И., Ковальчик Л., Мацонашвили Б.Н., Сазонов А.В. ФТП. 1988. Т.22. №12. С. 2118-2123.
- [6]. Агаев З.Ф., Аллахвердиев Э.А., Муртузов Г.М., Абдинов Д.Ш. Неорганические материалы. 2003. Т.39. №5. С.543-545.
- [7]. Киреев П.С. Физика полупроводников. М.: Высшая школа. 1975. 584с.