

Bakı, Azərbaycan

Baku, Azerbaijan

Баку, Азербайджан

МЕТОДОЛОГИЯ ОПРЕДЕЛЕНИЯ КИНЕТИЧЕСКИХ ПАРАМЕТРОВ В ТВЕРДЫХ ТЕЛАХ СО СЛОЖНОЙ ЗОННОЙ СТРУКТУРОЙ.

МЕХТИЕВ А.Ш., ТАИРОВ Б.А., ШАХТАХТИНСКИ М.Г.

Институт Физики Национальной Академии Наук Азербайджана AZ1143 Баку, пр.Г.Джавида 33 E-mail: btairov@physics.ab.az

На основе исследований всех независимых гальваномагнитных коэффициентов, а также дисперсии и поляризации электромагнитных магнитоплазменных волн (ЭМПВ) в Bi_{1-x}Sb_x, относяшемся к твердым телам со сложной зонной структурой при 77К определены кинетические параметры всех сортов носителей заряда.

1.ВВЕДЕНИЕ

Точность определения кинетических параметров в твердых телах для исследования физических процессов является определяющим фактором.

В поликристаллических, аморфных и в полупроводниках со сферической зонной структурой определение кинетических параметров может производится с достаточной степенью точности.

В многодолинных полупроводниках со сложной зонной структурой определение кинетических параметров сопряжено с рядом трудностей и в некоторых случаях является проблематичной.

Ярким примером анизотропных, многодолинных со сложной зонной структурой, являются Bi, Sb и их твердые растворы.

2. ЭЛЕКТРОННЫЕ СВОЙСТВА ВИСМУТА, СУРЬМЫ И ИХ ТВЕРДЫХ РАСТВОРОВ.

Кристаллические решетки Bi, Sb и сплавов $Bi_{1-x}Sb_x$ относятся к ромбоэдрической сингонии, классу дитригонального скаленоэдра (группа $D^5{}_{3d}$) и близки к кубической. Тригональная ось кристалла C_3 направлена вдоль оси (111). Кроме этого точечная группа симметрии висмута включает три оси второго порядка и три плоскости симметрии перпендикулярные к ним. Бинарные оси C_2 образуются пересечением плоскостей (111) с плоскостями $(1^-1^-1^-)$. Проекция любого из ребер ромбоэдра на плоскость (111) совпадет с биссектрисой оси C_1 .

Рассматривая симметрию кристалла, Джонс указал, [1] что электроны должны быть расположены в трех долинах, изоэнергетические поверхности которых эллипсоидальны и расположены таким образом, что поворот на $\pm 120^{0}$ вокруг тригональной оси переводят их друг в друга. Дальнейшие исследования Шенберга [2] показали, что эллипсоиды наклонены под небольшим углом ~ 6⁰ с тригональной плоскостью кристалла. Предполагалось, что закон дисперсии параболичен. Расчеты [3] показали, что электроны расположены в L, а дырки - в точке T зоны Бриллюэна (ЗБ). Такая модель получила название эллипсоидальной параболической модели (ЭП).

Оптические исследования показали, что в точке L близки две зоны [4], а щель аномально мала 10-20 МЭВ. Этот эксперимент послужил основой для двух зонных моделей. Закон дисперсии электронов, учитывающий влияние этой зоны, получил название эллипсоидально непараболической модели (ЭНМ) или закона дисперсии Лекса [5].

Модель Лекса находится, однако, в качественном противоречии с рядом экспериментальных данных, в частности, не может объяснить падения анизотропии [6] поверхности Ферми при увеличении энергии Ферми.

Исследования бесщелевого состояния [7], движения зон под давлением и циклотронного резонанса [8] показали, что зависимость энергии электронов от импульса для разных направлений различна, а поверхность Ферми не эллипсоидальна. Различная зависимость энергии от импульса следует из теоретических соображений: поскольку поверхность Ферми сильно вытянута вдоль некоторого направления, должна быть в 100 раз меньше, чем для направлений перпендикулярных вытянутости.

Коэн [9] высказал гипотезу, что в направлении вытянутости, взаимодействие ближайших зон полностью отсутствует. Эту модель принято называть не эллипсоидальной непараболической моделью (НЭНП) Коэна.

Более точная модель спектра электронов, учитывающая некоторое взаимодействие ближних зон в направлении вытянутости, была предложена Макклюром и Чоет [10].

Ві и Sb – типичные полуметаллы. Однако характерной особенностью их сплавов является переход в полупроводниковое состояние в некотором интервале концентраций сурьмы.

Характер изменения энергетической структуры в сплавах $Bi_{1-x}Sb_x$ при увлечении концентрации х изучался в работах [11-14].

Общая схема движения энергетической структуры представлена на рис.1.

Висмут и сплавы Bi_{1-x}Sb_x обладают малыми характерными энергиями в спектре носителей заряда (порядка 10 МЭВ), поэтому энергетическая структура очень чувствительна к внешним воздействием. Влияние гидростатического давления на энергетический спектр носителей заряда изучалось [15] и представлено на рис. 2.а и 2.б.

Рис 1. Схема перестройки энергетического спектра сплавов висмут-сурьма при возрастании концентрации сурьмы при T=4.2K.

Рис 2.а. Схема перестройки зонной структуры полупроводниковых сплавов Bi_{1-х} Sb_x от гидростатического давления при 4,2К.

Рис 2.6. Схема перестройки зонной структуры полуметаллических сплавов Bi_{1-x}Sb_x с x<0.04 от гидростатического давления при 4,2K.

Для описания температурной зависимости ширины запрещенной зоны используется формула [16].

$$E_{gl} = E_{gl(0)} - a(x)\frac{T^2}{T + Q(x)^1} \qquad (1)$$

где а – константа, Eg_i(0) –и Q величины порядка ширины запрещенной зоны и температуры Дебая при температуре абсолютного нуля, соответственно. Значения параметров для сплавов Bi_{1-x}Sb_x представлены в [17].

При наличии внешнего электрического и магнитного полей, а также температурного градиента плотность тока J и плотность теплового потока а в произвольном направлении кристалла могут быть представлены в виде.

$$J_{i} = \sigma_{ij}(\vec{B})\frac{1}{e}\nabla_{j}\varphi + \beta_{ij}(\vec{B})\nabla_{j}T \qquad (2)$$

$$q_{i} = \lambda_{ij}(\vec{B})\frac{1}{e}\nabla_{j}\varphi + \chi_{ij}(\vec{B})\nabla_{j}T \qquad (3)$$

где φ - электрохимический потенциал; е-заряд электронов. Коэффициенты $\sigma_{ij}(\vec{B})$, $\beta_{ij}(\vec{B})$, $\lambda_{ij}(\vec{B})$, и χ_{ij} (\vec{B}), представляют собой тензоры второго ранга, зависящие от индукции магнитного поля.

Согласно принципу симметрии кинетических коэффициентов (принцип Онзагера) $\sigma_{ij}(\vec{B}) = \sigma_{ji}$ $(-\vec{B}); \chi_{ij}(\vec{B}) = \chi_{ji}(-\vec{B}); \lambda_{ij}(\vec{B}) = T\beta_{ji}(-\vec{B}).$ (4)

В частности, в рассматриваемом здесь приближении необходимые соотношения получаются разложением $\sigma_{ii}(\vec{B})$ в ряд по степям (\vec{B})

На первом этапе ограничимся членами разложения до $\vec{B}^{\ 2}$

$$\sigma_{ij}(\vec{B}) = \sigma_{ji}^{s} + {}^{a}\sigma_{ij}, kBk + \sigma_{ij}^{s}, ke \vec{B}_{k}\vec{B}_{i}$$
(5)

В частности, для кристаллов симметрии D_3^d такое разложения приводится в работе [18]. Компоненты тензора удельного сопротивления в магнитном поле определяется двенадцатью независимыми компонентами.

Для количественной интерпретации экспериментальных результатов по гальваномагнитным свойствам $Bi_{1-x}Sb_x$ использовались соотношения между компонентами тензоров гальваномагнитных коэффициентов подвижностей электронов и дырок, а также их концентрациями, определяемые моделью энергетического спектра.

В общем случае модель энергетического спектра носителей заряда в сплавах $Bi_{1-x}Sb_x$ должна учитывать возможность размещения носителей заряда в зонах L_a , L_s , T, \sum , H и ΓT .

Такая модель в общем случае может быть описана тремя компонентами подвижности L_a электронов (μ_1, μ_2, μ_3), тремя компонентами подвижности L_s, \sum , H дырок и \sum электронов (v_1, v_2, v_3), углом наклона электронных и дырочных эллипсоидов $\phi_3 \phi_{a}$ - соответственно, концентрацией N_s N_{a} , и наконец двумя компотами подвижностей T и ГT дырок ($v_1'=v_2', v_3'$ и их концентрацией.

Ниже приводятся, полученные таким образом, соотношения [19]:

$$\sigma_{11,0} = \frac{1}{2} N_3 e(\mu_1 + a_1^2 \mu_2 + \beta_1^2 \mu_3) \pm \frac{1}{2} N_g e(\nu_1 + a_2^2 \nu_2 + \beta_2^2 \nu_{3)} \pm N_g' e \nu_1'$$
(6)

$$\sigma_{33,0} = N_3 e(a_1^2 \mu_3 + \beta_1^2 \mu_2) \pm N_g e(a_2^2 \nu_3 + \beta_2^2 \nu_{2}) \pm N_g e \nu_3^{,*}$$
(7)

$$-\sigma_{231} = -\frac{N_3 e}{2c} [\mu_2 \mu_3 + \mu_1 (\beta_1^2 \mu_2 + a_1^2 \mu_3)] \pm \\ \pm \frac{N_g e}{2c} [\nu_2 \nu_3 + \nu_1 (\beta_2^2 \nu_2 + a_2^2 \nu_3)] \pm \frac{N_g^2}{c} \nu_1^2 \nu_3^2$$
(8)

$$-\sigma_{123} = -\frac{N_3 e}{C} \left[\mu_1 (\beta_1^2 \mu_3 + a_1^2 \mu_2) \right] \pm \frac{N_g e}{C} \left[\nu_1 (\beta_2^2 \nu_3 + a_2^2 \nu_2) \right] \pm \pm \frac{N_g e}{C} \nu_1^{'2}$$
(9)
$$\sigma_{1133} = \frac{N_3 e}{2 \sigma^2} \left[(\mu_1 + \beta_1^2 \mu_3 + a_1^2 \mu_2) \mu_1 (\beta_1^2 \mu_3 + a_1^2 \mu_2) \right] \pm$$

$$\pm \frac{N_{3}e}{2C^{2}} \Big[(v_{1} + \beta_{2}^{2}v_{3} + a_{21}^{2}v_{2})v_{1}(\beta_{2}^{2}v_{3} + a_{2}^{2}v_{2}) \Big] \pm \frac{N_{g}e}{C^{2}} v_{1}^{'3}$$
(10)

$$\sigma_{33,11} = \frac{N_3 e}{2C^2} (\beta_1^2 \mu_2 + a_1^2 \mu_3) [\mu_2 \mu_3 + \mu_1 (\beta_1^2 \mu_2 + a_1^2 \mu_3)] \pm \frac{N_g e}{2c^2} (\beta_2^2 \nu_2 + a_2^2 \nu_3) [\nu_2 \nu_3 + \nu_1 (\beta_2^2 \nu_2 + a_2^2 \nu_3)] \pm \frac{N_g e}{C^2} \nu_1 \nu_3^{'2}$$
(11)

$$\sigma_{11,11} = \frac{N_3 e}{8C^2} \Big[\beta_1^2 \mu_2 (\mu_1 - \mu_3)^2 + a_1^2 \mu_3 (\mu_1 - \mu_2)^2 + 3a_1^2 \beta_1^2 \mu_1 (\mu_2 - \mu_3)^2 \Big] \pm \frac{N_g e}{8c^2} \Big[\beta_2^2 v_2 (v_1 - v_3)^2 + a_2^2 v_3 (v_1 - v_2)^2 + 3a_2^2 \beta_2^2 v_1 (v_2 - v_3)^2 \Big]$$
(12)

$$\sigma_{11,22} = \frac{N_3 e}{8C^2} [3\beta_1^2 \mu_2(\mu_1^2 + \mu_3^2) + 3\alpha_1^2 \mu_3(\mu_1^2 + \mu_2^2) + \alpha_1^2 \beta_1^2 \mu_1(\mu_2 - \mu_3)^2 + + 2\mu_1 \mu_2 \mu_3] \pm \frac{N_g e}{8c^2} [3\beta_2^2 \nu_2(\nu_1^2 - \nu_3^2) + 3\alpha_2^2 \nu_3(\nu_1^2 + \nu_2^2) + + a_2^2 \beta_2^2 \nu_1(\nu_1 - \nu_2)^2 + 2\nu_1 \nu_2 \nu_3] \pm \frac{N_g e}{C^2} \nu_1^{'2} \nu_3^{'}$$
(13)

$$\sigma_{33,33} = \frac{N_3 e}{C^2} \alpha_1^2 \beta_1^2 \mu_1 (\mu_2 - \mu_3)^2 \pm \frac{N_g e}{C^2} \alpha_2^2 \beta_2^2 \nu_1 (\nu_2 - \nu_3)^2$$
(14)

$$-\sigma_{22,23} = \frac{N_3 e}{2c^2} (\beta_1^2 \mu_2 + \alpha_1^2 \mu_3) [\mu_1 (\beta_1^2 \mu_3 + \alpha_1^2 \mu_2)] \pm \frac{N_g e}{2C^2} (\beta_2^2 \nu_2 + \alpha_2^2 \nu_3) [\nu_1 (\beta_2^2 \nu_3 + \alpha_2^2 \nu_2)] \pm \frac{N_g e}{2C^2} \nu_1^{'2} \nu_3^{'}$$
(15)

$$\sigma_{22,23} = \frac{N_3 e}{4C^2} \alpha_1 \beta_1 \mu_1 (\mu_2 - \mu_3) (-\mu_1 + \alpha_1^2 \mu_2 + \beta_1^2 \mu_3) \pm \frac{N_g e}{4C^2} \alpha_2 \beta_2 \nu_1 (\nu_2 - \nu_3) (-\nu_1 + \alpha_2^2 \nu_2 + \beta_2^2 \nu_3)$$
(16)

$$\sigma_{23,22} = \frac{N_3 e}{4C^2} \alpha_1 \beta_1 (\mu_2 - \mu_3) (\mu_2 \mu_3 - \mu_1 (\beta_1^2 \mu_2 + \alpha_1^2 \mu_3)] \pm \frac{N_g e}{4C^2} \alpha_2 \beta_2 (\nu_2 - \nu_3) [\nu_2 \nu_3 - \nu_1 (\beta_2^2 \nu_2 + \alpha_2^2 \nu_3)]$$
(17)

где N - концентрация носителей заряда, μ_1 и υ_1 . соответственно компоненты тензора подвижности электронов и дырок, α_1 , β_1 и α_2 , β_2 - косинусы и синусы углов наклонов электронных и дырочных эллипсоидов, соответственно.

Запись электропроводности в магнитном поле удобна тем, что в ней явно отражается аддитивность, вкладов носителей отдельных зон. В эксперименте, однако измеряемыми величинами являются компоненты сопротивления в магнитном поле, которые связана с соответствующими компонентами для кристаллов D_{3d} симметрии в [20]. Приведенные выше соотношения вместе с условием

$$\dot{N_3} = N_g + N_g' \tag{18}$$

(справедливым для нелегированных сплавов представляют собой тринадцать уравнений с тринадцатью неизвестными, (левые части уравнений – эксперименталь определенные коэффициенты). Однако, как известно, зона проводимости сильно непараболична.

Выше приведенные соотношения при рассмотрении в рамках модели Макклюра и Чоя более громоздки, т.к. число привнесенных неизвестных возрастает. Следует отметит, что в узкощелевых полупроводниках матрацный элемент рассеяние на акустических фононах зависит от энергии. Эти обстоятельства подсказали Херемансу и Хансену ввести токую зависимость и для Ві, а конкретные параметры были определены из сравнения экспериментальных данных по подвижности и термоэдс. В некоторых отношениях выражения для кинетических коэффициентов этой модели и параболической зоны оказались похожими. Поэтому выше приведенные соотношения остаются в силе.

Таким образом, решение этой нелинейной системы уровнений должно привести и к конкретному определению параметров энергетического спектра. Однако, в аналитическом виде решить эту систему уравнений не удается, и поэтому, обычно, для этой цели применяют вычислительные машины с последующим отбором решения, наиболее правильно отвечающего физическому смыслу определенных величин. Чтобы уменьшит неоднозначность определяемых параметров надо привлечь совершенно другие методы.

3. ПЛАЗМА В ТВЕРДЫХ ТЕЛАХ

Коллективные волновые и колебательные процессов системы свободных носителей заряда являются характерной особенности плазмы твердых тел. Понятие плазмы в твердом теле используется применительно к описанию коллективного отклика на электромагнитные возмущения квазинейтральной системы, состоящей из свободных носителей заряда двух знаков.

Важнейшим параметром плазмы является плаз-

менная частота
$$\omega_r = \sqrt{\frac{q^2 n}{m\varepsilon}}$$
 (19), с которой

совершается колебание отрицательных зарядов относительно положительных. Где: q-заряда электрона, nконцентрация носителей заряда, m-эффективная масса, ε-диэлектрический проницаемости. Эти колебания иногда называют собственными колебаниями плазмы.

Квант энергии плазменных колебаний $\hbar \omega_p$ называют плазмоном. Впервые в твердом теле возбудить и наблюдать плазмоны удалось Рутеману [21], а также Лангу [22] в 1948 году. В их экспериментах плазмоны возбуждались в тонких планках металлов пучком электронов с энергией в несколько кeV.

Энергия плазмонов определялось путем анализа спектра потерь прошедших через металлическую электронов. Было фольгу получено для $Al \hbar \omega_p \approx 14.7 eV$, для $Sb \hbar \omega_p = 22.6 eV$, для Be $\hbar \omega_{\rm p} = 19.00 eV$. B полупроводниках $\hbar \omega_n - 10^{-3} \, {\rm eV}$ и плазмоны могут возбуждаться в результате тепловых колебаний электронов. Частота плазменных колебаний в частности ионизированном, которые наблюдались в экспериментах Тонкса и Ленгмюра, была порядка 100 МГЦ. Энергия плазмонов на этой частоте, невелика, $\hbar \omega_n \sim 10^{-5}$ eV, и колебания могли возбуждаться тепловым движением ионов газа. Для металлов частота плазменных колебаний составляет величину порядка 10 eV. Поэтому они практически не возбуждается тепловым движением атомов твердого тела.

4. ДИСПЕРСИЯ И ПОЛЯРИЗАЦИЯ ЭМПВ В Bi_{1-x}Sb_x

К началу 1960-х годов было накоплено много фактов о том, что твердым телам присущи многие свойства плазмы и появилась новая область исследований электродинамики слабозатухающих низкочастотных магнитоплазменных волн в металлах. В 1961 г. Перель и Константов [23] предсказали возможность распространения циркулярных поляризованных волн в металле, помещенном в сильном магнитное поле. Из-за циркулярной поляризации эти волны получили название геликонных. Исследователей привлекли, во-первых, необычные свойства геликонов (например, их фазовая скорость в металлах на 5-10 порядков меньше скорости света в вакууме), вовторых, возможность их практического применения для исследования металлов их практического применения исследования металлов ЛЛЯ И полупроводников. Дисперсия и поляризация ЭМПВ обусловлены циклотронным вращением носителей заряда, поэтому исследования параметров волн позволяют получить информацию о свойствах носителей.

Количественное описание электромагнитных волн в металлах и полупроводниках можно получить из уравнений Максвелла и уравнения, связывающего

электрическое поле волны Е плотность

 $\vec{J} = \vec{J}(\vec{E}) (20)$

В общем случае для анизотропной среды, характеризующейся тензором сопротивления при пренебрежении токами смещения, для волн типа ехр $i(\omega t - kz)$, уравнение дисперсии низкочастотных электромагнитных волн имеет вид:

$$k^{2}_{\pm} = \frac{-i\omega\mu_{0}(\rho_{xx} - \rho_{yy})}{2(\rho_{xx}\rho_{yy} - \rho_{xy}\rho_{yx})} \pm \frac{\omega\mu_{0}\left[\left(\rho_{xx} - \rho_{yy}\right)^{2} - 4\rho_{xx}\rho_{yy}\right]^{\frac{1}{2}}}{2(\rho_{xx}\rho_{yy} - \rho_{xy}\rho_{yx})}$$
(21)

где $\omega = 2\pi f$ -циклическая частота, μ_0 - магнитная постоянная.

Поляризация магнитной составляющей не имеет компоненты и определяется выражением:

$$\left\{\frac{b_{x}}{b_{x}}\right\}_{\pm} = 2\rho_{xy}\left\{\frac{\left|\rho_{yy} - \rho_{xx}\right|}{\pm i\left[-4\rho_{xy}\rho_{yx}\left(\rho_{xx} - \rho_{yy}\right)^{2}\right]^{\frac{1}{2}}}\right\}^{-1} (22)$$

Тип распространяющейся волны зависит от соотношения между компонентами тензора сопротивления. При $|\rho_{xx} - \rho_{yy}| << 2 |\rho_{xy}|$ уравнение (22) описывает эллиптические поляризованные волны. Знак (+) в (22) соответствует слабо затухающей волне

(геликону), знак (-)- обыкновенной волне. При $\left| \rho_{xx} - \rho_{yy} \right| \ll 2 \left| \rho_{xy} \right|$ волне линейно поляризованы.

Как видно из (22) дисперсия и поляризация ЭМПВ определяется тензорам электропроводности.

Изменения фазовый скорости, длины ЭМП волны, ее поляризации, резонансных частот и добротности резонатора, их зависимостей от направления и индукции магнитного поля позволяют определить составляющие тензора электропроводности, концентрацию носителей заряда, величину и анизотропию их подвижности.

Для простаты сначала рассмотрим случай одной группы носителей заряда, имеющих сферически симметричную изоэнергетическую поверхность. В этом случае составляющие тензора электропроводно-

сти при $\vec{B}_0 \| Z$ удовлетворяют соотношения

$$\sigma_{xz} = \sigma_{zx} = \sigma_{yz} = \sigma_{zy} = 0, \qquad \qquad \sigma_{xx} = \sigma_{yy} u$$

 $\sigma_{xy} = -\sigma_{yx}$. Тогда резонансную частоту ω_{z} , согласно (21) можно записать в вид:

 $\omega_r = (\gamma^z \pi / \mu_0 d^2) \left(\sigma_{xx}^2 + \sigma^2_{xy} \right)^{-1/2} \quad (23)$

В приближении модели Друде составляющие тензора электропроводности имеют простой вид:

$$\sigma_{xx} = e^2 n \mu / (j + \mu^2 B^2)$$
(24)

$$\sigma_{xy} = e^2 n \mu^2 B / (1 + \mu^2 B^2)$$
(25)

где n- концентрация, а µ- подвижность носителей заряда.

Тогда

$$\omega_r = (\gamma \pi^2 / \mu_0 \, ed^2) \frac{1}{en} \cdot \frac{1}{\mu} \sqrt{\mu^2 B^2 + 1} \quad (26)$$

в области сильных магнитных полей µB>>1

$$\omega_{r_0} = (\gamma \pi^2 / \mu_0 \, ed^2) (B_0 / n) \tag{27}$$

Из уравнения (27) видно, что концентрацию подвижных носителей заряда, обуславливающих распространение ЭМПВ можно легко определить по резонансной частоте и индукции магнитного поля.

Если ω<<ω_{го,} т.е. когда длина волны превышает толщину образца из (26-27) следует:

$$U \sim M_{T}^{s} \sim \sigma_{xy} + \frac{\sigma_{yx} \sigma_{zy}}{\sigma_{zz}}$$
(28)

Для изотропного полупроводника и модели Друде

$$\sim \sigma_{xy} = C \frac{\mu^2 B_o}{1 + \mu^2 B_0^2}$$
(29)

где С- величина, не зависящая от В₀. Максимум U соответствующее максимуму зависимости U (B₀) при $\omega < \omega_{zo}$ можно определить подвижность носителей заряда. Для анизотропной эллипсоидальной длины максимум σ_{xy} определяется тем же условием $\mu_0 B_0 = 1$, если μ_c определить следующим условием:

$$\mu_c = (\mu_x \mu_y) \frac{1}{2}$$
 при $\vec{B}_0 \| Z$

Эта подвижность по аналогии с циклотронной эффективной массой можно назвать циклотронной подвижностью которая характеризует некоторую среднюю подвижность в плоскости, перпендикулярной магнитному полю B_0 . Измеряя μ_c при разных направлениях B_0 можно определить тензор подвижности.

Следует отметит, что для чистого висмута и сплавов $Bi_{1-x}Se_x$ циклотронные подвижности равны [23]:

$$B_0 \| C_3 \mu_{c3} = \left[\left(\gamma_2 \gamma_3 - \gamma_4^2 \right) \frac{\gamma_1}{\gamma_3} \right]^{-\frac{1}{2}}, \ \mu_{ch3} = \mu_{h1}; \ B_0 \| C_1 \mu_{c1a} = \left(\gamma_2 \gamma_3 - \gamma_4^2 \right)^{-\frac{1}{2}},$$

$$\mu_{c1b} = \frac{1}{2} \left[\frac{\gamma_1 \gamma_2 \gamma_3 - \gamma_1 \gamma_4^2}{\gamma_1 + 3\gamma_2} \right]^2, \quad \mu_{ch1} = (\Gamma \Gamma)^{-1/2} \quad (30)$$

$$B_0 \| C_2 \mu_{c2} = \left[\left(\gamma_2 \gamma_3 - \gamma_4^2 \right) \frac{\gamma_1}{\gamma_3} \right]^{-\frac{1}{2}}, \quad \mu_{c2b} = \frac{1}{2} \left[\frac{\gamma_1 \gamma_2 \gamma_3 - \gamma_1 \gamma_4^2}{3\gamma_1 + 3\gamma_2} \right]^{-\frac{1}{2}}, \quad \mu_{ch2} = \mu_{ch1}$$

где индексы 1, 2, 3 при циклотронных подвижностях указывает направление магнитного поля вдоль соответствующих кристаллографических направлений $\gamma_1, \gamma_2, \gamma_3$ параметры обратной подвижности L электронов, а Γ_1, Γ_2 -Т дырок.

Модель Друде справедлива только для полностью вырожденного полупроводника и в этом случае μ это подвижность носителей заряда на уровне Ферми. В случае слабого вырождения, что реализуется в сплавах $Bi_{1-x}Sb_x$ при температуре жидкого азота и выше, для выражений составляющих тензора электропроводности, нужно, пользоваться уравнения. приближением кинетического Для изотропного полупроводника составляющие тензора электропроводности можно записать в виде

$$\sigma_{xy} = en\left\langle\frac{\mu^2 B_0}{1+\mu^2 B_0^2}\right\rangle = \alpha_1 |B_0| \frac{\langle\mu^2\rangle B_0}{1+\langle\mu^2\rangle B^2} (31)$$

$$\sigma_{xx} = en\left\langle\frac{\mu^2 B_0}{1+\mu^2 B_0^2}\right\rangle = \alpha_2 |B_0| \frac{\langle\mu^2\rangle B_0}{1+\langle\mu^2\rangle B^2} (32)$$

где скобки < > означают усреднение по функции распределения $\mu = \mu(E)$ подвижность носителей заряда с энергией Е, < μ >- дрейфовая подвижность, $\alpha_{1,2}$ - некоторые функции индукции магнитного поля B₀, зависящие от механизма рассеяния носителей заряда. α_1 является аналогом Холл-фактора. Значение магнитной индукции B_r, соответствующее максимуму зависимости σ_{xy} от B₀ отличается от значения определенного дрейфовой подвижностью B'_r=< μ >⁻¹. Таким образом подвижность оп максимуму σ_{xy} не всегда совпадает с дрейфовой с другой стороны, она не является холловской подвижностью. Подвижность носителей заряда, определенную по максимуму σ_{xy} , далее будем называть циклотронной.

В области сильных магнитных полей <µ>В>>1, α₁(В)приближается к единице. По этому измерения концентрации носителей заряда не содержит Холлфактора. Условие для реализации формулы (31) не является очень жестким µВ>>3, в то время как в случае эффекта Холла, Холла-фактор стремится к единице лишь при <µ>В>20 [23]. А в области слабых полей формула (31) имеет вид:

$$U \sim \sigma_{xy} = ne\gamma_1(B) \frac{\mu^2 B}{1 + \mu^2 B^2}$$
(33)

Как показана в [23], $\gamma_1(B)$ мало меняется в области слабых магнитных полей (примерно до $\mu B \approx 0,1$) независима от механизмов рассеяния. Слабая зависимость $\gamma_1(B)$ в указанной области магнитной полей позволяет определит дрейфовую подвижность носителей заряда при помощи измерения U при двух значениях постоянного магнитного поля B_1 и B_2 (0< μB_1 < μB_2 <0,1):

$$\mu = \left[\frac{B_1 - (U_1/U_2)B_2}{B_1 B_2 [(U_1/U_2)B_1 - B_2]}\right]^{1/2}$$
(34)

где U_1 , U_2 измеряемые амплитуды напряжения, пропорциональные M^S_{\perp} , при двух значениях индукции постоянного магнитного поля B_1 и B_2 , соответственно.

При $\omega < \omega_{\Gamma}$ из для разности фаз ϕ возбуждающего и возбуждаемого магнитных полей получим простое выражение

$$\varphi = \operatorname{arctg}\left[\frac{\pi^{2}}{2\mu_{0}\omega d^{2}\sigma_{xx}} - \frac{\mu_{0}d^{2}\omega}{2\pi^{2}}\left(\frac{\sigma_{xx}^{2} + \sigma_{xy}^{2}}{\sigma_{xx}}\right)\right]$$
(35)

В слабых магнитных полях $\sigma_{xx} \rangle \sigma_{xy}, \sigma_{xx}(B) \approx \sigma_{xx}(0) = ne\mu$ и составляющая проводниками σ_{xx} определена разностью фаз

$$\sigma_{xx} = -\frac{\pi^2}{2\mu_0 \omega d^2} tg \varphi \left[\left(\frac{\pi^2}{\mu_0 \omega d^2} \right)^2 \left(tg^2 \varphi + 1 \right) \right]^{1/2}$$
(36)

Таким образом, измерения составляющей переменного магнитного поля позволяет определить в области слабых магнитных полей дрейфовую подвижность μ , диагональную составляющую проводимости σ_{xx} и, следовательно, концентрацию носителей заряда.

5. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Ю.К. Пожеле, Р.С. Бразису, Р.Б. Толутису, Б.А. Таирову, А.Ш. Мехтиеву, М.Г. Шахтахтинскому принадлежит замысел создание магнитоплазменной спектроскопии многодолинных полупроводниковых, т. е. системы экспериментальных методов исследования электронных процессов полупроводниках с помощью ЭМПВ.

Эксперименты проводились с применением одного из наиболее удобных методов исследования магнитоплазменных волн, основном на измерении размерных резонансов вызываемых распространением волн в пространстве ограниченном внешними поверхностями образца. Измерения производились в диапазоне частот 0,1-100 МГц с применением скрещивающихся катушек индуктивности.

На рисунках 1 и 2 показано принципиальная схема для исследования ВЧ ЭМПВ.

Рис.3. Схема экспериментальной установки для исследований магнитоплазменных волн методом скрещенных катушек (а), кассета с образцом между катушками (б) и типичные экспериментальные зависимости сигнала на катушке индикации от магнитного поля (с). 1- генератор в.ч., 2- модулятор амплитуды, 3плексигласовый держатель образца и катушек, 4- сосуд Дьюара из пенопласта, 5- усилитель н.ч., 6- двух координатный самописец, 7- холлловский датчик магнитного поля, 8- микрометрический винт для коррекции угла между катушками, 9- прецизионный потенцииометр для индукции угла поворота кассеты с образцом между катушками, 10- катушки индукции, 11- вращающаяся кассета, 12образец, 13- катушка возбуждения, 14- нить привода связанная с индикатором угла поворота 9 [24-25].

Рис.4. 1- ВЧ генератор; 2-линия задержки измеряемой длины; 3- образец; 4- аттенюатор; 5измеритель разности фаз; 6- двух координатный самописец; 7-датчик Холла. [23]

На рис 4. Представлены зависимости $f \cdot d^2 / B_{om}$ от B_{0M} при ориентации магнитного поля вдоль главных кристаллографических осей при T=77K [24-25].

Рис.5. Зависимости между резонансными значениями и магнитной индукцией В_{от} для образцов собственного $Bi_{0.92}Sb_{0.08}$; d-толщина образцов. Сплошные линии - теория, а точки –эксперимент; C₁, C₂, C₃- бинарная, биссектрисная и тригональная оси, соответственно. [24-25].

Результаты исследований показали, что циклотронные подвижности сплавов $Bi_{1-x}Sb_x$ различны для разных кристаллографических направлений. При $B_0 \| C_3$ циклотронная подвижность μ_{c3} имеет наименьшее значение, что соответствует наибольшей циклотронной эффективной массе носителей заряда. При $B_0 \| C_1, C_2$ циклотронные подвижности значительно больше, чем при $B_0 \| C_3$. Отметим, что такие соотношения между циклотронными подвижностями свойственны L-зоне проводимости. При увеличении частоты наблюдался переход к размерному резонансу геликонов, результаты анализа которого также согласуются с моделью трех эллипсоидальных долин в L точки ЗБ.

Перейдем теперь к рассмотрению угловой зависимости

$$U_{(\varphi)} \sim \left| \rho_{xy}(\varphi) \right| = \left| \rho_{xy}^{a}(B_{0}, 0) + \left\{ \left[\rho_{xy}(B_{0}, 0) \right]^{2} + \left\{ + \frac{1}{4} \left[\rho_{yy}(B_{0}, 0) - \rho_{xx}(B_{0}, 0) \right]^{2} \right\}^{\frac{1}{2}} \sin (2\varphi + \theta) (37) \right\}$$

где
$$\theta = \frac{1}{2} \operatorname{arctg} \frac{2\rho_{xy}^{s}(B_{0}, 0)}{\rho_{yy}(B_{0}, 0) - \rho_{xx}(B_{0}, 0)}$$

компоненты тензора $\rho_{xy}(\varphi)$ записана в системе координат, связанной с катушками, а $\rho_{ij}(B_0, 0)$ -компоненты тензора сопротивления в системе координат, совпадающей с главными кристаллографическими осями. Зависимости $U_{(\varphi)}$ для $B_0 \| C_2$ показаны на рис 4. Интересно отметить, что даже при B_0 зависимость $U_{(\varphi)}$ имеет вид четерехлепестковой кривой с центром в U=0. Это свидетельствует о сильной анизотропии электропроводимости $Bi_{0.92}Sb_{0.08}$ даже в отсутствие магнитного поля. Поскольку компоненты тензора ρ_{ij} зависят от магнитного поля, величина $\frac{2A}{U_0}$ также зависит от магнитного поля (рис 6); согласно (36) величина A пропорциональна симметричной части, а U_0 - асимметричной части тензора ρ_{xy} .

Как видно из рис 7 величина $2A/U_0$ при $B_0 \| C_1$ в общем намного меньше, чем при $B_0 \| C_2$; отсюда следует, что по сравнению с $B_0 \| C_2$ при $B_0 \| C_1$ мала эллиптичность сечения поверхности Ферми плоскостью, перпендикулярной к магнитному полю.

Рис 6. Экспериментальные зависимости $U = U_{(\phi)}$ для собственного $Bi_{0.92}Sb_{0.08}$ в полярных координатах (точки) и синусоидальные зависи-

мости $U = |U_0 + A \sin 2\varphi|$, совмещенные с экспериментальными точками f= 0.8 МГц, 1-B₀= 0,03 Тл, B₀>0; 2 -B₀= 0,03Тл, B₀<0; 3-B₀=0 (масштаб кривой 3 увеличен в 50 раз по сравнению с масштабом кривых 1 и 2) [25]

Рис 7.Зависимости $\eta = \eta(B_o)$ для собственного $Bi_{0.92}Sb_{0.08}$. Экспериментальные точки получены при f = 0.8 МГц [26].

Гальваномагнитные измерения показали, что ЭДС Холла соответствовал электронам. Совокупность вышеуказанной фактов служит основанием для утверждения, что в исследованном нами $Bi_{0.92}Sb_{0.08}$ основную роль в электропроводности играют электрона, расселенные, как и в висмуте, по энергетическим долинам в L-точке ЗБ. Сообразно с этими, мы проверили теоретическое моделирование зависимости $fd^2B_{ot}^{-1} = f(B_0)$, а также зависимостей $2A/U_0=f(B_0)$ по формуле

$$\eta = \frac{2A}{U_0} = \frac{2\left[\rho_{xy}(B_0, 0) - \rho_{xy}(B_0, 0)\right]^2}{\rho_{xy}(B_0, 0) - \rho_{yx}(B_0, 0)} + \frac{\left[\rho_{yy}(B_0, 0) - \rho_{xx}(B_0, 0)\right]^2}{\rho_{xy}(B_0, 0) - \rho_{yx}(B_0, 0)}$$
(38)

При расчетах приняты во внимание, выполнявшиеся в условиях нашего эксперимента, неравенства:

 $B_0 >> B_{-}, \nu \rangle k V_{F,} \omega << \omega_c, \omega \langle \langle \nu, где B_{-}$ амплитуда возбуждаемых в образце магнитоплазменных волн, ν - частота соударений. ω_c - циклотронная частота, ω , к – циклическая частота и волновое число, V_F - скорость Ферми. Учитывалось, что в используемом диапазоне частот (0,1-20 МГц) токами

смещения по сравнению с токами смещения по сравнению с токами проводимости можно пренебречь. Результаты исследование температурных зависимостей всех независимых гальваномагнитных коэффициентов предвидены в работе [26]. Решение уравнений (6-17) даже при использование вычислительных машин неприводим к однозначному определению этих параметров. По этому значения параметров электронов нами брались из результатов исследований ЭМПВ. Кроме того, поскольку валентная зона в точки L почти «зеркально» по отношению к зоне проводимости, мы приняли $v_3 / v_1 = \mu_3 / \mu_1$. В результате число не известных было сокрушено, это позволила нам с достаточной точностью определит остальных неизвестных. Значения экспериментально определяемых И вычисленных гальваномагнитных коэффициентов в сплавах $Bi_{1-x}Sb_x$ при T=77К (ρ_{11}, ρ_{33} измерялись с точностью 3% ρ_{123}, ρ_{231} -5%, $\rho_{11,22}$ -10%, $\rho_{11,11}$ и $ho_{_{33,11}}$ -15%, $ho_{_{11,33}}$ и $ho_{_{33,33}}$ -20%; Размерность: $\sigma_{_{jj}}$ -Ом⁻¹см⁻¹, σ_{jjk} – см Кл⁻¹Ом⁻², $\sigma_{jj,kl}$ -см³Кл⁻²Ом⁻³.

Таблица 1.

Ат %		$\sigma_{\!\scriptscriptstyle 11}$	$\sigma_{\scriptscriptstyle 33}$	$\sigma_{_{231}}$	$\sigma_{\scriptscriptstyle 123}$	$\sigma_{\scriptscriptstyle 11.33}$	$\sigma_{\scriptscriptstyle 33.11}$	$\sigma_{\scriptscriptstyle 11.11}$	$\sigma_{\scriptscriptstyle 11.22}$	$\sigma_{\scriptscriptstyle 33.33}$
30		10 ⁻³	10 ⁻³	10 ⁻⁹	10 ⁻⁸	10 ⁻¹²	10^{-14}	10^{-14}	10 ⁻¹⁴	10^{-12}
0	Эксп.	32,32	26,57	9,99	3,75	220.00	34.66	19.92	59.40	106.24
	вычис	32,39	26,54	9,52	3,57	200.00	35.00	17.80	54.00	108.00
0.06	Эксп.	12,44	15,94	8,70	2,77	245.00	76.20	29.40	82.70	192.00
	вычис	11,80	14,64	8,72	2,98	244.00	72.80	26.00	79.40	143.00
0.09	Эксп.	6,67	7,94	5,45	2,22	284.00	70.40	35.70	95.20	171.00
	вычис	6,65	7,82	6,16	2,15	278.00	79.10	28.60	86.10	155.00
0.12	Эксп.	4,80	5,30	2,72	0,84	96.00	30.90	17.26	49.50	62.00
	вычис	4,60	5,40	3,07	0,83	100.00	32.00	17.06	47.90	71.00
0.16	Эксп.	5,15	5,70	2,00	0,68	34.00	10.70	5.84	14.20	19.30
	вычис	4,87	6,10	2,06	0,60	39.00	14.30	5.10	1560	20.00
0.18	Эксп.	6,25	7,80	2,20	0,58	17.50	10.30	3.55	11.10	10.50
	вычис	6,03	7,70	2,26	0,59	23.81	11.90	4.21	12.80	12.00
0.20	Эксп.	7,40	9,10	1,82	0,53	11.00	7.50	2.62	7.85	8.00
	вычис	7,10	8,90	1,90	0,53	17.23	7.20	2.60	7.85	7.00
0.22	Эксп.	7,94	9,60	1,28	0,34	8.60	2.90	1.74	4.30	5.72
	вычис	7,53	9,38	1,38	0,35	10.60	3.50	1.26	3.83	7.23
0.25	Эксп.	8,10	10,20	0,69	0,21	5.30	1.16	1.01	1.97	2.23
	вычис	7,27	9,10	0,86	0,19	4.35	1.47	0.53	1.60	2.98
1	Эксп.	141,00	198,00	0,63	7,20	12.50	0.38	0.10	0.32	3.50
	вычис	145,00	192,00	0,58	7,14	11.30	0.45	0.08	0.34	2.50

Ат % Sb	0	0,06	0,09	0,12	0,16	0,18	0,20	0,22	0,25	1
ϕ_1	7 ⁰ 10	6 ⁰ 40	6 ⁰ 30	5 ⁰ 50	5^{0}	4 ⁰ 40	4 ⁰ 10	4 ⁰ 6	4 ⁰ 6	6 [°] 23
φ ₁				7 ⁰	16 ⁰	16 ⁰	16 ⁰	16 ⁰	16 ⁰	24 ⁰
11.	7 40	1 20	1 72	1 79	9.00	7.15	5.20	3 4 4	2 32	18 30
μι	(5)	(6)	(6)	(6)	(5)	(5)	(5)	(5)	(5)	(3)
μ ₂	7.4	1.08	1.84	0.63	8.10	6.43	4.68	3.09	2.09	0.37
	(1)	(4)	(4)	(4)	(3)	(3)	(3)	(3)	(3)	(3)
µ3	3.70	8.40	1.12	0.92	6.30	5.00	3.64	2.41	1.62	14.2
	(5)	(5)	(6)	(6)	(5)	(5)	(5)	(5)	(5)	(3)
$\boldsymbol{\nu}_1$				5.70	3.00	1.80	1.3	9.10	5.80	23.13
				(5)	(5)	(5)	(5)	(4)	(4)	(3)
V_2				2.4	1.50	0.9	0.654	4.55	2.90	2.96
				(3)	(4)	(4)	(4)	(3)	(3)	(3)
V_3				2.9	1.50	0.9	0.65	4.55	2.90	14.5
				(5)	(5)	(5)	(5)	(4)	(4)	(3)
$\boldsymbol{\nu}_1$	1.23	0.99	1.52							14.00
	(5)	(5)	(5)							(3)
V_2	1.23	0.99	1.52							14.00
	(5)	(5)	(5)							(3)
V_3	9.84	7.92	1.20							4500
	(3)	(3)	(4)							(3)
$N_{\mathfrak{s}}$	4.50	1.10	4.05	2.40	4.95	8.21	1.33	2.10	3.04	39.00
	(17)	(17)	(16)	(16)	(16)	(16)	(17)	(17)	(17)	(18
Ng				2.40	4.95	8.21	1.33	2.10	3.04	39.00
				(16)	(16)	(16)	(17)	(17)	(17)	(18
Ng	4.50	1.10	4.05							
	(17)	(17)	(16)							

Таблица 2.Кинетические параметры носителей заряда для сплавов Ві_{1-х}Sb_x при Т=77К

- [1]. Jones.H. The theory or the Galvariomagnetic errect in bismuth.Proc. Roy, Soc, 1936, v, A155, n.686 p. 653-663.
- [2]. Shoenberg D. Proc, Roy. Soc., 1939. vol. A 170, p. 341
- [3]. Ferreira L. G.Relativistic bend structure calculation
- [4]. BoyleW., Brailsford A.D For infrared studies of bismuth. Phys. Rev., 1960, v. 120. n. 6 p, 1943-1949.
- [5]. Lax B- Magneto spectroscopy in semImetals (Bi) Bull Phys. Sac., 1960 v. 5, p-167-179
- [6]. Буянова Е.П., Евсеев В.Б, Иванов Г.А., Миронова Г.А., Пономарев Я.Г. Определение параметров закона дисперсии носителей у полупроводниковых сплавов Bl_{1-x}Sb_x n, 1976, T,20, B.7, с. 1937-1946.
- [7]. Брандт Н.Б., Чан Тхи Бик, Пономарев Я.Г. Изменение анизотропии Ферми у полупроводникового сплава Bl_{0.90}Sb_{0.10} р типа

при переходе в бесщелевое состояние под действием давления. ЖЭТФ 1977, т.72 в.3., с. 981-1000.

- [8]. Dunger R.J., Lowson A.W. Cuclotren resonance and Lfte Cohen nonellipsoidal nonpar abolic mdel for Bi. Phys. Rev., 1961, v. 121, n.2, p. 367-395.
- [9]. Cohen M. Energy bands in the bismuth structure, Phys. Rev., 1961, v.121, n.2, p. 387-335.
- [10]. McClure J. W., Chor K.H. Energy band model and properties of electrons in bismuth. Solid. St. Comm., 1977. v.21. n.3, p. 1015-1018.
- [11]. Брандт Н.Б., Корчак Б.А., Чесноков А.М., Чудинов С.М. Переходы полупроводникполуметалл у сплавов Bi-Sb с высокой концентрацией Sb. ФТТ, 1977, т.19, в.7, с. 2107-2116.
- [12]. Lerner L,L., Cuff K .,Williams L., Energy band parameters and relative band motion in the Bi-Sb alloy system near the semimetel -semiconductor

transition. Rev. Mod-Phys., 1968. v-40, n-4, p.770-775

- [13]. Миронова Г.А., Судакова М. В., Пономарев Я.Г. Исследования зонной структуры полупроводниках сплавов Ві_{1-х}Sb_x. ЖЭТФ, 1980, т.78, в.5, с 1830-1851.
- [14]. Брандт Н.Б., Герман Р., Голышева Г.И., Девяткова Л.И., Кусник Д., Краак В., Пономарев Я.Г. Электронная поверхность Ферми у полуметаллических сплавов Bi_{1-x}Sb_x (0,23<X<0,56).ЖЭТФ, 1982, т. 63,н.6, с. 2152-2169.
- [15]. Брандт Н.Б., Чудинов С.М., Караваев В.Г. Исследования бесщелевого состояния в сплавах висмут-сурьма под давлением. ЖЭТФ, 1971, т.61, в.2, с 689-704.
- [16]. Брандт Н.Б., Корчак Б.А., Чудинов С.М. Спиновое расщепление и эффективные Gфактор Т-дырок у сплавов Bi_{1-x}Sb_x. ФНТ, 1977, т. 3, в.2, с. 152-163
- [17]. Ravindra N.M., Srivastava V. K. Temperature dependence of the energy gap in semiconductors. J. Phys. Ghem. Sol., 1979. v, 40, n.10, p.791-793.
- [18]. Juretschke H. J. Symmetry of galvanomagnetic effect in antimony. Acta Crystallog., 1955, v.8, n.11, p. 716-722

- [19]. Zitter R.N Small-Field Galvan magnetic Tensor of Bismuth at 4·2⁰K-Phys. Rev., 1962, v. 127, №5, p.1471-1480.
- [20]. Jan J.P. Galvanomagnetic and Thermomagnetic Effects in Metals Solid State Physics. N. Y., 1957.
- [21]. Гинзбург В. Л., Распространение электромагнитных волн в плазме, Физматгиз, 1960.
- [22]. Гинзбург В. Л., Рухадзе А. А., Волны в магнитоактивной плазме, «Наука», 1975.
- [23]. Пожела Ю. К., Толутис Р.Б. Определение подвижности и концентрации носителей заряда в полупроводниках бесконтактными магнитоплазменными. Методами.- ФТП, 1980, т.14, в.6, с.1193-1201.
- [24]. Таиров Б.А., Мехтиев А.Ш., Шахтахтинский М.Г Дисперсия геликонных волн в твердых растворов Bi-Sb, легированных теллуром. Известия АН Азерб. ССР, 1974, н.4
- [25]. R., Pozela J., Tairov Brazis В. and Shakhtakhtinskii М. Investigation of Magnetoplama Weve Dispersion in Pure and Doped $Bi_{0.92}Sb_{0.08}$ at Liquid Nitrogen Temperature. Phys. Stat. Sol. (b), v.62, n 2, p.697-708.
- [26]. Таиров Б.А. дисс. на соиск. уч. ст. д. ф.м. н. Баку 1994.