

АНИЗОТРОПИЯ МИКРОВОЛНОВОЙ ПРОВОДИМОСТИ И ПСЕВДОЩЕЛЕВЫЕ ЭФФЕКТЫ В КРИСТАЛЛАХ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКОВ

НЕФЕДОВ Ю.А., ТРУНИН М.Р., ШЕВЧУН А.Ф.

Институт физики твердого тела РАН, 142432 Черноголовка, Московская обл., Россия e-mail: trunin@issp.ac.ru; http: www.issp.ac.ru/lek/trunin.html; тел.: 7-096-25222942; факс: 7-096-5764111

Анализируются общие и отличительные свойства температурных зависимостей микроволнового поверхностного импеданса Z(T)=R(T) + iX(T) и комплексной проводимости $\sigma(T)=\sigma'(T) + \sigma''(T)$ в аb-плоскостях и вдоль с-оси кристаллов высокотемпературных сверхпроводников (ВТСП). Главное внимание сконцентрировано на эволюции этих зависимостей и измерениях анизотропии кристаллаYBa₂Cu₃O_{7-x}, в котором уровень допирования кислородом *x* менялся от 0.07 до 0.47. При x > 0.07 и $T < T_c/2$ псевдощель в значительной мере определяет поведение $\sigma''_{ab}(T, x)$, но не влияет на $\sigma''_{c}(T, x)$ Обсуждаются возможные механизмы проводимости в рамках моделей нормального, сверхпроводящего и псевдощелевого состояний ВТСП.

І. ВВЕДЕНИЕ

В современной проблематике ВТСП выделяются две актуальные задачи: (i) выяснение механизмов транспорта квазичастиц вдоль кристаллографических направлений этих анизотропных соединений и (ii) изучение природы и свойств псевдощелевых состояний фазовой диаграммы ВТСП. К числу экспериментальных методов исследования этих задач относятся измерения температурных зависимостей поверхностного импеданса Z(T) = R(T) + iX(T) в абсолютных единицах (омах) на сверхвысоких частотах ω. Действительная часть импеданса, поверхностное сопротивление R(T), связана с потерями энергии электромагнитной волны при отражении от сверхпроводника и механизмом рассеяния нормальных носителей. Мнимая часть, реактанс X(T), характеризует отклик сверхпроводящих носителей. В локальной электродинамике, подходящей для ВТСП, импеданс Z(T) определяет проводимость $\sigma(T) = \sigma'(T) + \sigma''(T) =$ $i\omega\mu_0/Z^2(T)$, где $\mu_0 = 4\pi \cdot 10^{-7}$ Гн/м. Известно, что прецизионные измерения Z(T) в классических сверхпроводниках были очень информативными: величина щели Δ извлекалась из температурной зависимости поверхностного сопротивления $R(T) \sim e^{-\Delta/k_B T}$ при $T < T_c/2$, глубина проникновения $\lambda(T)$ поля В сверхпроводник - из реактанса $X(T) = i\omega\mu_0(T)$ при T <

 T_c , длина свободного пробега электронов -из измерений R(T) и X(T) в нормальном состоянии ($T > T_c$). Мощной демонстрацией применимости теории Бардина-Купера-Шриффера (БКШ)¹ для объяснения свойств классических сверхпроводников было немонотонное в области $0.8 < T/T_c < 1$ поведение (когерентный пик) действительной части микроволновой проводимости $\sigma'(T)$. Однако уже первые исследования импеданса и проводимости ВТСП не соответствовали выводам теории БКШ: когерентный пик в $\sigma'(T)$ отсутствовал, а в области низких температур вместо экспоненциальных наблюдались степенные температурные зависимости $Z_s(T)$.

В ВТСП величины Z и σ характеризуются двумя основными компонентами: Z_{ab} (и σ_{ab}) в слабоанизотропных ab-плоскостях CuO₂ и Z_c (и σ_c) поперек купратных плоскостей. Наиболее изученной является узкая область фазовой диаграммы ВТСП, соответствующая оптимальному допированию $p \approx 0.16$ (p концентрация дырок, приходящихся на атом меди в плоскости CuO₂) и максимальным значениям критической температуры $T_c = T_{cmax}$ В нормальном состоянии оптимально допированных ВТСП удельное сопротивление $\rho_{ab}(T) = 1/\sigma_{ab}(T)$ растет пропорционально температуре, $\Delta \rho_{ab}(T) \sim T$. Величина $\rho_{ab}(T)$ намного меньше сопротивления в перпендикулярном направлении $\rho_c(T)$, которое тоже имеет металлический характер (производные $\rho_{ab}(T)$ и $\rho_c(T)$ по температуре положительны). Исключением является самое анизотропное ($\rho_c/\rho_{ab} \sim 10^5$ при $T \approx T_c$ и $p \approx 0.16$) среди ВТСП соединение Bi₂Sr₂CaCu₂O₈ (BSCCO), где сопротивление $\rho_c(T)$ растет по мере приближения T к T_c ($d\rho_c(T)/dT < 0$).

В сверхпроводящем состоянии мерой анизотропии ВТСП служит отношение плотностей сверхпроводящей жидкости в купратных плоскостях и в перпендикулярном им направлении, равное $\sigma_{ab}''(0) / \sigma_c''(0) = \lambda_c^2(0) / \lambda_{ab}^2(0)$, где σ_{ab}'' и σ_c'' мнимые части проводимости, λ_{ab} и λ_c - глубины проникновения высокочастотного поля для токов, текуших соответственно в аb-плоскостях перпендикулярно к ним. Хорошо известно, что в высококачественных оптимально допированных монокристаллах ВТСП изменение $\Delta \lambda_{ab}(T) \sim T$ при T < Т /3, и этот экспериментальный факт отражает $d_{x^2-y^2}$ симметрию параметра порядка в них². В литературе нет единого мнения о низкотемпературном поведении $\Delta \lambda_{C}(T)$. Даже в наиболее

подробно исследованных монокристаллах YBa₂Cu₃O_{6.95}(YBCO) с $T_c \sim 93K$ наблюдались как линейная зависимость $\Delta \lambda_C(T) \sim T$ при $T < T_C / 3^{-3-5}$, так и квадратичная⁶.

Другой важной особенностью микроволнового отклика оптимально допированных кристаллов ВТСП является линейное при низких температурах изменение поверхностного сопротивления $R_{ab}(T)$ в *ab*-плоскостях. На частотах ~ 10 ГГц и ниже в кристаллах BSCCO⁷⁻¹⁰, Tl₂Ba₂CaCu₂O_{8- δ} (TBCCO)¹¹ и Tl₂Ba₂CuO_{6+ δ} (TBCO)¹²⁻¹⁴ с тетрагональной решеткой линейный ход $\Delta R_{ab}(T)$ ~T наблюдается в области $0 < T < T_c/2$. В орторомбических кристаллах YBCO он оканчивается при $T < T_c/3$ и переходит в широкий пик при более высоких температурах¹⁵⁻²³.

В гораздо меньшей степени исследована широкая область псевдощелевых состояний фазовой диаграммы ВТСП, возникающих при уменьшении концентрации *p* < 0.16. При *T* < *T*_c из измерений динамической восприимчивости ориентированных порошков ВТСП следует²⁴, что кривые $\sigma''_{\mathcal{C}}(T) / \sigma''_{\mathcal{C}}(0)$ в них имеют меньший наклон при Т —> 0 по сравнению с $\sigma''_{ab}(T) / \sigma''_{ab}(0)$. Общими свойствами нормального состояния недодо-пированных ВТСП являются неметаллическое поведение сопротивления $\rho_{c}(T)$ при приближении T к T_{c} , отклонения от линейной зависимости $\Delta \rho_{ab}(T) \sim T$ и резкий рост отношения ρ_c / ρ_{ab} с уменьшением концентрации p. Существует много теоретических моделей, предлагающих объяснение этих свойств, но ни одна из них не описывает в полной мере эволюцию кривых $\sigma''_{ab}(T)$, $\sigma''_{c}(T)$ и $\rho_{ab}(T)$, $\rho_{c}(T)$ в широком диапазоне изменений концентрации и температуры.

В данной работе мы обсудим общие свойства и отличительные особенности температурных зависимостей поверхностного импеданса Z(T) = R(T)iX(T)комплексной проводимости +И $\sigma(T) = \sigma'(T) - i\sigma''(T)$ в *аb*-плоскостях и вдоль *c*-оси в нормальном и сверхпроводящем состояниях кристаллов ВТСП. Анализируя главным образом результаты измерений анизотропии и эволюции компонент зависимостей температурных проводимости кристалла УВа2Си₃О 7-x при вариациях кислородного допирования в интервале 0.07 < x <0.47, мы продемонстрируем универсальный подход к решению обеих упомянутых вначале задач (i) и (ii).

П. ИЗМЕРЕНИЯ АНИЗОТРОПИИ ИМПЕДАНСА И ПРОВОДИМОСТИ

В сантиметровом и миллиметровом диапазонах длин волн для измерения поверхностного импеданса образцов ВТСП малого размера, площадь поверхности которых ~ 1 мм², используется так называемый "hot-finger" метод²⁵. Мы помещали образец на сапфировом стержне в центр цилиндрического резонатора из Nb, работающего на частоте f = 9.42 ГГц и моде H_{001}^{26} , т.е. в максимум квазиоднородного СВЧ магнитного поля (рис. 1).

Рис. 1. Схематический вид резонансной системы, используемой в "hot-finger" методе.

Температура стержня и образца менялась от гелиевых до комнатных температур без нагрева самого резонатора, который снаружи омывался жидким гелием и всегда находился в сверх-При проводящем состоянии. некоторой установившейся температуре Т регистрировалась зависимость прошедшей через резонатор мощности СВЧ от частоты (резонансная кривая), из которой в первой серии опытов определялись добротность $Q_{S}(T)$ и частота $f_S(T)$ резонатора с образцом внутри, а во второй - $Q_e(T)$ и $f_e(T)$ резонатора без образца. Температурные зависимости поверхностного

сопротивления R и реактанса X образца находятся из соотношений $^{26}\!\!\!:$

$$R(T) = \Gamma \Delta(1/Q) = \Gamma \left[Q_{s}^{-1}(T) - Q_{e}^{-1}(T) \right]$$
(1)

$$X(T) = -2\Gamma \frac{\delta f}{f} = -\frac{2\Gamma}{f} \Big[\Delta f_s(T) - \Delta f_e(T) - f_0 \Big] \quad (2)$$

где Г - геометрический фактор образца и *бf* - разность между частотами резонатора с образцом и резонатора с идентичным по форме и размерам идеальным проводником, в который не проникает магнитное поле. Значение *бf* отличается от разности измеряемых сдвигов резонансной частоты $\left[\Delta f_s - \Delta f_e = \Delta f\right]$ на константу f_0 , включающую как уход частоты, обусловленный идеальным проводником, так и невоспроизводимые изменения начала отсчета частоты резонатора при помещении или удалении из него образца. Как следует из (1) и (2), для определения значений R(T) и X(T) по измеряемым Q(T) и $\Delta f(T)$ необходимо знать две величины: Г и f₀. В кристаллах ВТСП константа f_0 может быть найдена из измерений микроволнового отклика в нормальном состоянии. Геометрический фактор образца, порядок величины которого равен десяткам кОм на частотах ~ 10 ГГц, зависит от формы, размеров кристалла и его расположения в резонаторе. Полный цикл измерений измерений анизотропии микроволнового отклика кристалла включает: (i) измерения температурных добротности и сдвига зависимостей частоты сверхпроводящего ниобиевого резонатора с образцом в двух, поперечной (T) и продольной (L), ориентациях кристалла относительно микроволнового магнитного поля (рис. 2); (ii) определение из измерений в Ториентации поверхностного сопротивления $R_{ab}(T)$, реактанса $X_{ab}(T)$ и проводимости $\sigma(T)$ купратных плоскостей кристалла нормальном В И сверхпроводящем состояниях и (iii) определение $\sigma_{c}(T)$, $X_{C}(T)$, $R_{C}(T)$ с использованием данных, полученных в обеих ориентациях. Этот метод определения компонент тензора поверхностного импеданса и комплексной проводимости монокристаллов ВТСП по измеряемым величинам добротности и сдвига частоты резонатора изложен в работе⁵. Для образца, имеющего форму плоскопараллельной пластины с размерами b >> a > c, b^5 получено выражение для его геометрического фактора Г в микроволновом магнитном поле $H_{\omega} \parallel$ с. Зная Г, из (1) и (2) находим импеданс Z_{ab} в Т-ориентации образца и его проводимость $\sigma_{ab}(T) = i\omega\mu_0 / Z_{ab}^2(T)$. В⁵ указана также подробная процедура определения компонент проводимости и импеданса вдоль с-оси кристалла, учитывающая влияние размерного эффекта при измерениях в L-ориентации ($H_{\omega} \perp c$).

Вместе эти результаты позволяют с высокой точностью определить тензор комплексной проводимости как в нормальном, так и в сверхпроводящем состояниях, и служат электродина-

мической основой метода исследований анизотропии крист;

Рис. 2. Две ориентации кристалла относительно микроволнового магнитного поля H_ω в резонаторе: (а) - продольная (L), H_ω ⊥ c и (b) - поперечная (T), H_ωIIc. Стрелки указывают направления высокочастотных токов.

Мы иллюстрируем эффективность этого метода на примере измерений анизотропии и эволюции температурных зависимостей компонент УВа₂Cu₃O 7-б проводимости кристалла при вариациях кислородного допирования в интервале $0.07 \le x \le 0.47$. Кристалл был выращен в BaZrO₃ тигле, имел правильную форму и размеры 1.6×0.4×0.1 мм³. Содержание кислорода в образце менялось путем его контролируемого отжига в воздухе при разных $T \ge 500^{\circ} C$, указанных в таблице 1. Измерения анизотропии проводимости были проведены при температурах 5≤Т≤ 200 К для каждого из пяти состояний кристалла, ширина сверхпроводящего перехода в которых, согласно измерениям восприимчивости на частоте 100 кГц, составляла 0.1 К в оптимально допированном (x =0.07) состоянии, но увеличивалась с ростом x, достигая 4 К при x = 0.47. Температуры сверхпроводящего перехода имели значения $T_c = 92$, 80, 70, 57, 41 К. Используя эмпирическое соотношение²⁷ $T_c = T_{c,max}[1 - 82.6(p - 0.16)^2]$ с $T_{c,max} =$ 92 К при p = 0.16 (x = 0.07), находим концентрации p= 0.12, 0.106, 0.092, 0.078 дырок, приходящихся на атом меди в плоскости CuO₂, для остальных четырех состояний УВа₂Cu₃O_{7-x} с меньшими T_c и x = 0.26, 0.33, 0.40, 0.47 соответственно.

III. НОРМАЛЬНОЕ СОСТОЯНИЕ

На рис. 3 приведены температурные зависимости компонент поверхностного импеданса в *ab*-плоскости и вдоль *c*-оси для каждого из пяти состояний кристалла YBa₂Cu₃O_{7-x}, указанных в таблице 1.

Рис. 3. а) действительные $R_{ab}(T)$ (сплошные символы) и мнимые X_{ab} (T) (светлые символы) части поверхностного импеданса *ab*-плоскостей пяти состояний кристалла $YBa_2Cu_3O_{7-x}$, б) компоненты поверхностного импеданса вдоль *c*-оси.

При каждом *х* в нормальном состоянии (при $T > T_c$) $R_{ab}(T) = X_{ab}(T)$ и $R_C(T) = X_C(T)$. Поэтому сопротивления $\rho_{ab}(T)$ и $\rho_c(T)$ были найдены из $R_{ab}(T)$ и $R_C(T)$ по обычным формулам нормального скин-эффекта:

 $\rho_{ab}(T) = 2R_{ab}^2(T) / \omega \mu_0, \quad \rho_c(T) = 2R_c^2(T) / \omega \mu_0.$

Эволюция кривых $\rho_{ab}(T)$ и $\rho_c(T)$ с изменением x в интервале $T_c < T < 200 K$ показана на рис. 4.

Таблица I: Температуры отжига и критические температуры, параметры допирования и глубины проникновения полей в кристалл YBa₂Cu₃O_{7-х.}

Anneal . temp.	Critic. temp.	Dopping parameters		λ_{values} at T=0		$\Delta\lambda_{\mathcal{C}}(T) \sim \\ T^{\alpha}$
T, ℃	TC, K	р	x	λ _{ab} nm	λ_c μ m	å
500	92	0.16	0.07	152	155.	1.0
520	80	0.12	0.26	170	3.0	1.1
550	70	0.10	0.33	178	5.2	1.2
600	57	0.09	0.40	190	6.9	1.3
720	41	0.07	0.47	198	16.3	1.8

Только в оптимально допированном обе зависимости $\rho_{ab}(T)$ и $\rho_c(T)$ имеют металлический характер; во всех других состояниях $\rho_c(T)$ растет с уменьшением температуры. Можно предположить, что незначительное уменьшение концентрации носителей по сравнению с оптимальным уровнем приводит к кроссоверу от 3D металлической проводимости к 2D друдевской проводимости в слоях CuO₂ и туннельной проводимости между этими слоями.

Кроссовер имеет место, когда время перескока становится сравнимым с временем релаксации в слое, что эквивалентно критерию^{28,29}

$$\sigma_{c,\max}\sigma_{ab} \approx \frac{n_{2D}}{\pi} \left(\frac{e^2}{\hbar}\right)^2$$
 (3)

где $\sigma_{c,\max}$ - максимальное значение туннельной спроводимости, σ_{ab} - друдевская проводимость и n_{2D} - двумерная плотность квазичастиц в *ab*-плоскости. Из (3) при $n_{2D} = 10^{14}$ см⁻² в ВТСП следует, что кроссовер 3D-2D наступает при достижении значения $\rho_c \rho_{ab} \approx 10^{-6}$ (Ом*см)². Только при x = 0.07 на рис. 4 произведение $\rho_c \rho_{ab} \le 10^{-6}$ (Ом*см)², что указывает на применимость 3D анизотропной фермижидкостной модели для объяснения транспортных свойств оптимально допированного YBa₂Cu₃O_{6.93}.

Кривые $\rho_c(T)$ на рис. 4 хорошо описываются в поляронной модели с-транспорта квазичастиц³⁰. Согласно этой модели, межплоскостное туннелирование квазичастиц рассматривается как возмущение исходно сильно связанной электрон-фононной системы.

Рис. 4. Эволюция измеренных зависимостей $\rho_{ab}(T)$ и $\rho_c(T)$ в УВа₂Си₃О_{7-х} с разным содержанием кислорода.

В *с*-направлении электрон движется в окружении большого числа фононов, образуя полярон, слабо влияющий на поперечный *ab*-транспорт. Для эйнштейновского спектра *с*-поляризованных фононов в области температур $T \sim \omega_0$ в³⁰ получено выражение

$$\rho_c(T) \sim \rho_{ab}(T) \frac{\exp[g^2 \tanh(\omega_0/4T)]}{\sqrt{\sinh(\omega_0/2T)}}$$
(4)

где ω_0 - , g5.4(-)6d>7(T1 gTf0.3348 74.08-0.0022 Tc[79w()TjE268>-5.3<0266 0)Tj.993 88]TJ/TT66 16802625f>87.7<0266 1680

среднеквадратичное отклонение $R_{ab}(T)$ от $X_{ab}(T)$ в нормальном состоянии кристалла соответствовало неточности около 5 нм при нахождении значения $\lambda_{ab}(0)$.

В оптимально допированном кристалле УВа₂Cu₃0_{6.93} (YBCO) (p = 0.16) температурная зависимость R_{ab}(T) имеет широкий пик в области $T \sim T_c/2$. С уменьшением p пик постепенно исчезает (рис. За). Подобного пика не наблюдалось в кристаллах BSCCO, TBCCO, TBCO, LaSrCuO с тетрагональной или кубической (BaKBiO) решетками.

Главные особенности температурных зависимостей поверхностного импеданса в *ab*плоскостях оптимально допированных монокристаллов YBCO, BSCCO, TBCO и TBCCO на частотах ~ 10 GHz суммированы в таблице 2.

Таблица II: Поверхностное сопротивление $R_{ab}(T)$, реактанс $X_{ab}(T)$, глубина проникновения $\lambda_{ab}(T)$, удельное

сопротивление $\rho_{ab}(T)$ и их изменения с температурой T в <i>ab</i> -плоскости оптимально	допированных
монокристаллов ВТСП на частотах ~ 10 GHz	
Сверхпроволящее состояние $T \leq T_{c}$	

ВТСП	Низкие температуры 2 <i>K</i> < <i>T</i> « <i>T</i> _C	Промежуточные температуры $T \sim T_c/2$	$T \rightarrow T_c$	Нормальное состояние $2T_c > T > T_c$
Орторомбическая структура YBCO $T_c \sim 92 \ K$	$\Delta R(T) \propto T$, $\Delta X(T) \propto T$ при $T < T_c/4$; Разные наклоны $\Delta \lambda(T) \propto T$ [18-24]	Широкий пик в <i>R</i> (<i>T</i>) при 25 < <i>T</i> < 45 К [3-7,15-24] Особенности: 1. "Плечо" [21,22] в <i>R</i> (<i>T</i>) при <i>T</i> > 40 К; 2. "Горб" [21] или плато [20] у кривых <i>X</i> (<i>T</i>) при 50 < <i>T</i> < 80 К.	Разные наклоны λ(T) [18-24].	Нормальный скин-эффект R(T) = X(T) = $\sqrt{\omega\mu_0\rho(T)/2}$
Тетрагональная структура BSCCO <i>T_c</i> ~ 90 K [8-11] TBCCO <i>T_c</i> ~110 K [12]	Δi ΔX (T	$R(T) \propto T, \qquad T < T_{c}/2$ $T = \omega \mu_0 \Delta \lambda(T) \propto T , \qquad T < T_{c}/3$	Быстры й рост <i>R(T)</i> И <i>X(T)</i>	$\Delta \rho(T) \propto T$
ТВСО <i>T_c</i> ~ 80 К [13-15]				X(T) > R(T)

Общими для всех кристаллов ВТСП закономерностями являются линейные при $T \ll T_C$ зависимости поверхностного сопротивления $\Delta R_S(T) \propto T$ и реактанса $\Delta R_S(T) \propto \Delta \lambda_{ab}(T) \propto T$. Линейный ход поверхностного сопротивления простирается вплоть до $T_C/2$ в тетрагональных кристаллах и оканчивается вблизи или ниже $T < T_C/3$ в ҮВСО. Кроме того, в некоторых монокристаллах YBCO обнаружены особенности у кривых $\lambda_{ab}(T)$ и $R_{ab}(T)$ в промежуточной области температур.

V. ВЛИЯНИЕ ПСЕВДОЩЕЛИ

По мере уменьшения концентрации p < 0.16 и приближения к диэлектрической фазе в ВТСП развивается конкуренция псевдощелевого и сверхпроводящего параметров порядка, что в области $T \ll T_C$ приводит к особенностям в *p*- и *T*-зависимостях плотности сверхпроводящей жидкости $n_S(T, p)$. В чистом сверхпроводнике с *d*-симметрией

щели (DSC) величина $\Delta n_S(T) = n_S(T) - n_0$ линейно зависит от температуры $T < T_c$: $\Delta n_S(T) \propto (-T/\Delta_0)$, где $n_0 \equiv \Delta n_S(0)$ и $\Delta_0 = \Delta(0)$ - плотность сверхпроводящей жидкости и амплитуда щели при T= 0. Эта зависимость надежно подтверждена измерениями лондоновской глубины проникновения $\lambda_{ab}(T) = \sqrt{m^*/\mu_0 e^2 n_S(T)}$ электромагнитного поля, затухающего в купратных *ab*-плоскостях оптимально допированных ВТСП: $\Delta \lambda_{ab}(T) \propto T$ при $T < T_c/3$ (таблица 2).

Производная $\left| dn_S(T) / dT \right|$ при $T \to 0$

определяет величину n_0 / Δ_0 . Если с уменьшением p < 0.16 спектр квазичастиц сверхпроводника попрежнему определяется термически возбужденными через щель фермионами, то наклон кривых $n_s(T)$ при $T << T_C$ останется пропорциональным величине $n_0(p)/\Delta_0(p)$: $|dn_s(T)/dT|_{T \to 0} \propto n_0(p)/\Delta_0(p)$. Из измерений $\lambda_{ab}(0)$ в недодопированных ВТСП известно, что $n_0(p) \propto \lambda_{ab}^{-2}(0)$ увеличивается приблизительно линейно с p > 0.08, достигая максимального значения при $p \approx 0.16^{32,33}$. В наших опытах при уменьшении концентрации дырок вдвое (от p = 0.16 до p = 0.078) величина $\lambda_{ab}^{-2}(0) = n_0 \mu_0 e^2 / m^*$ тоже уменьшается приблизительно в два раза, как это следует из рис. 7.

Измерений $n_0(p)$ при p < 0.08 в ВТСП не проводилось. Поведение $n_0(p) \propto p$ вплоть до p = 0 предсказывалось в обобщенных ферми-жидкостных моделях³⁴⁻³⁶.

В так называемой d-density wave (DDW) модели псевдощели³⁷⁻⁴⁰ $n_0(p) \propto p$ в интервале $0.07 , где DSC параметр порядка возрастает от нулевого до максимального значения согласно фазовой диаграмме на рис. 8, однако <math>n_0(p)$ не обращается в нуль (рис. 1 из³⁹) при $\Delta_0(p) \rightarrow 0$, что соответствует данным на рис.7.

На рис. 7 приведены также зависимости от p наклонов $\left| d\lambda_{ab}^{-2}(T)/dT \right|_{T \to 0} \propto \left| dn_s(T)/dT \right|_{T \to 0}$ кривых $\lambda_{ab}^{-2}(T)$, полученных из данных $\lambda_{ab}(T)$ на рис. 6 при $T < T_C$. В интервале 0.1 величина $<math>\left| d\lambda_{ab}^{-2}(T)/dT \right|$ меняется слабо, что соответствует выводам³⁴. Однако при p < 0.1 происходит ее резкий рост: наклон $\lambda_{ab}^{-2}(T)$ увеличивается в 2.5 раза при уменьшении p от 0.12 до 0.08. Сплошная линия на рис. 7 изображает зависимость $\left| d\lambda_{ab}^{-2}(T)/dT \right| \propto p^{-2}$ и согласуется с результатом³⁵ при p < 0.12.

Рис. 8: (*T* — *p*) схематическая фазовая диаграмма ВТСП в DDW модели псевдощели, основанная на расчетах⁴⁰. АF -трехмерная антиферромагнитная фаза. Система является изолятором в AF состоянии, металлом в DDW и DDW+AF состояниях и сверхпроводником в DSC и DDW+DSC состояниях.

Пунктирная линия, проведенная через все экспериментальные значения $\left| d\lambda_{ab}^{-2}(T) / dT \right|$, отражает поведение этой величины в DDW модели^{38,39}. Другим подтверждением этой модели псевдощели служит изменение температурной зависимости $\Delta n_s(T)$ при *T* << *T*_C и р < 0.1. Представленные в нормированном виде $\lambda_{ab}^{2}(0) / \lambda_{ab}^{2}(T) = n_{S}(T) / n_{0}$ данные рис. 6 при $T < T_c/2$ приведены на рис. 9а для всех состояний кристалла УВа₂Си₃О_{7-х} с разными р (символы). Сплошной линией изображена зависимость $n_{s}(T) / n_{0}$ в DSC. Явной особенностью сильно недодопированных (p = 0.078 и p = 0.092) состояний является вогнутость кривых $n_s(T)/n_0$ на фоне DSC зависимости и кривых $n_{s}(T) / n_{0}$ для состояний с p = 0.16, 0.12, 0.106. Отметим, что эта особенность несильно зависит от значений $\lambda_{ab}(0)$. Это продемонстрировано на вставке рис. 9а, где экспериментальные данные $n_s(T)/n_0$ для с = 0.092 (треугольники) сравниваются с полученными путем увеличения $\lambda_{ab}(0)$ (светлые звезды) и уменьшения (сплошные звезды) на 40 нм - величину, значительно превосходящую экспериментальную неточность (~ 5

нм) определения $\lambda_{ab}(0)$. Согласно³⁸, $\Delta n_s(T)$ линейно зависит от температуры $T < T_c/2$ в интервале 0.1 , где DSC-щель превышает или сравнима с DDW-щелью (рис. 8), но при <math>p < 0.1, оставаясь при асимптотически низких T линейной, зависимость $\Delta n_s(T)$ с ростом T меняется на корневую.

Рис. 9: а) $\lambda_{ab}^{2}(0) / \lambda_{ab}^{2}(T) = n_{S}(T) / n_{0}$ при $T < T_{c}/2$ в YBa₂Cu₃O_{7-x} с разными уровнями допирования. Сплошная линия -зависимость $\lambda_{ab}^{2}(0) / \lambda_{ab}^{2}(T)$ в чистом БКШ d-волновом сверхпроводнике (DSC). На вставке приведены экспериментальная кривая $n_{S}(T) / n_{0}$ для p = 0.092 (треугольники) и кривые, построенные с увеличенными (светлые звезды) и уменьшенными (сплошные звезды) на 40 нм значениями $\lambda_{ab}(0)$; б) сравнение экспериментальных кривых $\lambda_{ab}^{-2}(T) \propto n_{S}(T)$ (символы) с линейной $\Delta \lambda_{ab}^{-2}(T) \propto (-T)$ (штриховые линии) и корневой $\Delta \lambda_{ab}^{-2}(T) \propto (-\sqrt{T})$ (сплошные линии) зависимостями в умеренно допированном (p = 0.106, x = 0.33) и сильно недодопированных (p = 0.092, x = 0.40; p = 0.078, x = 0.47) кристаллах.

Действительно, в достаточно широком интервале низких температур 0.1 $T_c < T < 0.5 T_c$ экспериментальные зависимости $n_s(T)$ в YBa₂Cu₃O_{6.60} и YBa₂Cu₃O_{6.53} с p < 0.1 не линейны и близки к корневым. Это демонстрирует рис. 9b, где измеренные кривые $\lambda_{ab}^{-2} \propto n_s(T)$ сравниваются с линейной (от T) в YBa₂Cu₃O_{6.63} (p = 0.106) и \sqrt{T} зависимостями $\Delta \lambda_{ab}^{-2}(T) = -3\sqrt{T}$ (λ_{ab} и T выражены в мкм и K) в YBa₂Cu₃O_{6.60} (p = 0.092) и $\Delta \lambda_{ab}^{-2}(T) = -3,5\sqrt{T}$ в YBa₂Cu₃O_{6.53} (p = 0.078). Штриховые линии на рис. 9b соответствуют продолженной в область высоких температур линейной экстраполяции кривых $\lambda_{ab}(T)$ при $T < T_c/3$ на рис. 6. Особенности λ_{ab}^{-2} при p < 0.1 на рис. 9 сопровождаются возникновением изгибов в области $T \sim 100$ *К* у двух нижних кривых $\rho_{ab}(T)$ на рис. 4, а эволюция зависимостей $\rho_c(T)$ с изменением x коррелирует с температурным поведением мнимой части проводимости вдоль с-оси $\sigma_c^{"}(T,p) = \lambda_c^{-2}(T,p)/\omega\mu_0$. Сплошными символами на рис. 10 изображены зависимости $\lambda_c^2(0)/\lambda_c^2(T) = \sigma_c^{"}(T)/\sigma_c^{"}(0)$ при $T < T_c/2$ для трех состояний кристалла YBa₂Cu₃O_{7-x}. В таблице 1 приведены значения $\lambda_c(0)$ и показатели

степени α у измеренных функций $\lambda_c(T) - \lambda_c(0) = \Delta \lambda_c(T) \propto T^{\alpha}$ при $T < T_c/3$. Кривые $\lambda_{ab}^2(0)/\lambda_{ab}^2(T)$ и $\lambda_c^2(0)/\lambda_c^2(T)$ на рис. 10 совпадают

в оптимально допированном (x = 0.07, p = 0.16) кристалле, как должно быть в анизотропном 3D сверхпроводнике, но с уменьшением с наклоны кривых $\lambda_C^2(0)/\lambda_C^2(T)$ при $T < T_c/3$ заметно уменьшаются. В модели⁴¹ такое поведение $\sigma_c''(T)$ отвечает уменьшению интеграла перекрытия t(p) между купратными плоскостями (сплошная и штриховая линии на рис. 10 - численные расчеты⁴¹ для p = 0.16 и $p \sim 0.1$ соответственно) и коррелирует с переходом при $T > T_c$ от друдевской (p = 0.16) проводимости вдоль с-оси к прыжковой (p < 0.16). Итак, низкотемпературные зависимости $\lambda_C(T)$ описываются без учета псевдощелевых эффектов.

Величина $1/\lambda_{C}(0, p)$ на вставке рис. 10 линейно изменяется с p и, в отличие от $n_0(p)$ на рис. 7, обращается в нуль при $p \sim 0.07$, где $T_c \longrightarrow 0$ (рис. 8). Другим подтверждением определяющей роли интеграла t(p) (а не влияния псевдощели) на поведение $\sigma_{c}''(T, p)$ служит обнаруженная нами в одинаковая зависимость от концентрации с величин $\sigma_c''(0,p)$ и $\sigma_c''(T_c,p)$ или, другими словами, прямая связь $\sigma_c''(0,p) = U(p)\sigma_c(T_c,p)$, где коэффициент пропорциональности U(p) определяется только зависимостями псевдо и сверхпроводящей щелей от р. Во всем интервале 0.07 < p < 0.16 величина U(p)/U(0.16) изменялась меньше, чем вдвое, в то время как $\sigma_c(p) / \sigma_c(0,16)$ при $T = T_c$, зависящая от интеграла перекрытия t(p), изменялась на лва порядка.

- J. Bardeen, L. N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).
- M. R. Trunin, and A. A. Golubov, in Spectroscopy of HighT_c Superconductors. A Theoretical View.
 M. Plakida ed. (Taylor and Francis, London and New York, 2003),pp. 159-233.
- [3]. J. Mao, D. H. Wu, J. L. Peng et al., Phys. Rev. B 51, 3316 (1995).
- [4]. 3. Srikanth, W. Zhai, S. Sridhar et al., J. Phys. Chem.Solids 59, 2105 (1998).
- [5]. Yu. A. Nefyodov, M. R. Trunin, A. A. Zhohov et al., Phys.Rev. B 67, 144504 (2003).
- [6]. A. Hosseini, S. Kamal, D. A. Bonn et al., Phys. Rev. Lett.81, 1298 (1998).
- [7]. T. Jacobs, S. Sridhar, Q. Li et al., Phys. Rev. Lett. 75,4516 (1995).
- [8]. T. Shibauchi, N. Katase, T. Tamegai et al., Physica C 264,227 (1996).
- [9]. S-F. Lee, D. C. Morgan, R. J. Ormeno et al., Phys. Rev.Lett. 77, 735 (1996).
- [10]. D. V. Shovkun, M. R. Trunin, A. A. Zhukov et al., Pis'ma Zh. Exp. Teor. Fiz. 71, 132 (2000) [JETP. Lett. 71, 92 (2000)].

Рис.10. Зависимости $\lambda_{ab}^2(0)/\lambda_{ab}^2(T)$ (светлые символы) в YBa₂Cu₃O_{6,93} и $\lambda_C^2(0)/\lambda_C^2(T)$ (сплошные символы) для трех состояний кристалла YBa₂Cu₃O_{7-x} с T_c = 92 K, T_c = 70 K и T_c = 41 К. Сплошная и штриховая линии - зависимости $\lambda_C^2(0)/\lambda_C^2(T)$, рассчитанные в⁴¹ для YBa₂Cu₃O_{7-x} с разным кислородным дефицитом. Вставка демонстрирует $1/\lambda_c$ при T = 0 как функцию p.

- [11]. A. A. Zhukov, M. R. Trunin, A. T. Sokolov et al. Zh. Exp. Teor. Fiz. 112, 2210 (1997) [JETP 85, 1211(1997)].
- [12]. D. M. Broun, D. C. Morgan, R. J. Ormeno et al., Phys.Rev. B 56, R11443 (1997).
- [13]. J. R. Waldram, D. M. Broun, D. C. Morgan et al., Phys.Rev. B 59, 1528 (1999).
- [14]. Yu. A. Nefyodov, PhD thesis, Institute of Solid State Physics (2003).
- [15]. D. A. Bonn, P. Dosanjh, R. Liang et al., Phys. Rev. Lett.68, 2390 (1992).
- [16]. D. A. Bonn, R. Liang, T. M. Riseman et al., Phys. Rev. B47, 11314 (1993).
- [17]. D. A. Bonn, S. Kamal, K. Zhang et al., Phys. Rev. B 50,4051 (1994).
- [18]. 3. Kitano, T. Shibauchi, K. Uchinokura et al., Phys. Rev.B 51, 1401 (1995).
- [19]. M. R. Trunin, A. A. Zhukov, G. A. Emel'chenko et al., Pis'ma Zh. Exp. Teor. Fiz. 65, 893 (1997) [JETP Lett.65, 938 (1997)].
- [20]. H. Srikanth, B. A. Willemsen, T. Jacobs et al., Phys. Rev.B 55, R14733 (1997).
- [21]. 3. Srikanth, W. Zhai, S. Sridhar et al., Phys. Rev. B 57,7986 (1998).

- [22]. S. Kamal, R. Liang, A. Hosseini et al., Phys. Rev. B 58,8933 (1998).
- [23]. A. Hosseini, R. Harris, S. Kamal et al., Phys. Rev. B 60,1349 (1999).
- [24]. T. Xiang, C. Panagapoulos, and J. R. Cooper, Int. Journ.Mod. Phys. B 12, 1007 (1998).
- [25]. S. Sridhar and W. L. Kennedy, Rev. Sci. Instrum. 54, 531(1988).
- [26]. М. Р. Трунин, УФН 168, 931 (1998); М. R. Trunin, J.Supercond. 11, 381 (1998).
- [27]. J. L. Tallon, C Bernhard, H. Shaked et al., Phys. Rev. B51, 12911 (1995).
- [28]. M. Turlakov, cond-mat/0111136.
- [29]. М. Р. Трунин и Ю. А. Нефедов, Письма в ЖЭТФ 77,696 (2003).
- [30]. A. F. Ho and A. J. Schofield, cond-mat/0211675; 0407059.
- [31]. M.R. Trunin, Yu.A. Nefyodov, and A.F. Shevchun, Phys.Rev. Lett. 92, 067006 (2004).
- [32]. J. W. Loram, J. Luo, J. R. Cooper et al., J. Phys. Chem.Solids 62, 59 (2001).
- [43].

- [33]. C. Bernhard, J.L. Tallon, Th. Blasius et al., Phys. Rev.Lett. 86, 1614 (2001).
- [34]. P. A. Lee and X-G. Wen, Phys. Rev. Lett. 78, 4111 (1997).
- [35]. A. J. Millis, S. M. Girvin, L. B. Ioffe et al., J. Phys. Chem.Solids 59, 1742 (1998).
- [36]. L. B. Ioffe and A. J. Millis, J. Phys. Chem. Solids 63, 2259(2002).
- [37]. S. Chakravarty, R. B. Laughlin, D. K. Morr et al., Phys.Rev. B 63, 094503 (2001).
- [38]. S. Tewari, H-Y. Kee, C Nayak et al., Phys. Rev. B 64,224516 (2001).
- [39]. Q.-H. Wang, J. H. Han, and D.-H. Lee, Phys. Rev. Lett.87, 077004 (2001).
- [40]. C. Nayak and E. Pivovarov, Phys. Rev. B 66, 064508(2002).
- [41]. R. J. Radtke, V. N. Kostur, and K. Levin, Phys. Rev. B53, R522 (1996).
- [42]. M. R. Trunin, Yu. A. Nefyodov, and A. F. Shevchun, Supercond. Sci. Technol. 17, 1082 (2004).