УДК 62.50

К ВОПРОСУ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ ПЕРЕХОДНЫХ ПРОЦЕССОВ В КОЛОННЕ БУРИЛЬНЫХ ТРУБ КАК ОБЪЕКТА С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ ПРИ УЧЕТЕ ПОТЕРЬ

АЛИЕВ Я.А., МАМЕДОВА З.А.

Азербайджанский Научно-Исследовательский Институт Энергетики и Энергетического проектирования

Дается численный метод расчета переходных процессов в колонне бурильных труб с распределенными параметрами при учете потерь между колонной бурильных труб и глинистым раствором. Получены алгоритмы, удобные для проведения расчетов на компьютере.

В настоящее время в условиях широкого внедрения компьютерной техники в инженерной практике, вопросы численного моделирования переходных процессов, возникающих в колонне бурильных труб как объекта с распределенными параметрами, приобретают важное научное и практическое значение [1,2].

Использование компьютерной техники обосновывается с тем, что осуществление реальных экспериментов в колонне бурильных труб как объекта с распределенными параметрами часто становится весьма затруднительным, а физическое моделирование требует существенных материальных затрат.

Использование компьютерной техники для численного моделирования переходных процессов в колонне бурильных труб, как объекта с распределенными параметрами, существенно расширяет круг решаемых практических задач.

Одним из эффективных численных методов расчета переходных процессов, возникающих в колонне бурильных труб, как объекта с распределенными параметрами, является численный метод [1,2], основанный на использовании дискретного аналога интегрального уравнения свертки [3].

Преимуществом указанного численного метода является то, что он позволяет найти переходные процессы, протекающие в объектах с распределенными параметрами при произвольных значениях αT и βT (α - коэффициент затухания волны, β - коэффициент искажений) без перехода в область дискретных изображений, а также осуществлять переход от Лапласовых изображений искомых функций в область оригиналов без нахождения корней характеристических уравнений передаточных функций, что значительно упрощает математические выкладки и повышает точность расчета.

Кроме того, предложенный подход [1,2], в отличие от существующих методов [4], в зависимости от заданной точности расчета, позволяет заменить операцию непрерывного интегрирования суммированием, пользуясь формулами прямоугольников, трапеций, Симпсона [3].

В работах [1,2] предложенные методы для численного моделирования переходных процессов в объектах с распределенными параметрами основывались на замене операций непрерывного интегрирования суммированием, пользуясь формулой прямоугольников.

В данной статье дается дальнейшее развитие работ [1,2] для расчета переходных процессов в колонне бурильных труб как объекта с распределенными параметрами при учете потерь между колонной бурильных труб и глинистым раствором, заменяя

операции непрерывного интегрирования суммированием, пользуясь формулой трапеций.

Переходные процессы, протекающие в колонне бурильных труб, как объекта с распределенными параметрами при крутильных колебаниях и при учете трения между колонны труб и глинистым раствором, описываются телеграфными уравнениями:

$$-\frac{\partial \omega}{\partial x} = \kappa_1 \frac{\partial M}{\partial t} + k_3 M,$$

$$-\frac{\partial M}{\partial x} = k_2 \frac{\partial \omega}{\partial t} + k_4 \omega, \qquad 0 \le x \le l$$
(1)

где $\omega = \omega(x,t)$ - угловая скорость; M = M(x,t) - крутящий момент; x- координата точки колонны вниз от устья скважины; $\kappa_1, \kappa_2, \kappa_3, \kappa_4$ – коэффициенты, характеризующие соответственно упругость, инерцию, податливость и потери на трение элементарной части колонны бурильных труб; *l*-длина колонны бурильных труб.

Начальные условия нулевые:

$$\omega(x,t)_{t=0} = 0, \quad M(x,t)_{t=0} = 0$$

Граничные условия имеют вид:

$$\omega(x.t)_{x=0} = \omega_{\mu}(t), \, \omega(x,t)_{x=\lambda} = \mu M(x,t)_{x=\lambda},$$

где $\omega_H(t)$ - произвольный закон изменения угловой скорости в начале колонны труб; и - постоянный коэффициент.

В рассматриваемом случае звено-долото представляется в виде активной нагрузки вала с сопротивлением μ . При свободном конце колонны бурильных труб $\mu = \infty$, при закрепленном $\mu = 0$.

При решении поставленной задачи на первом этапе необходимо получить Лапласово изображение для функций $\omega(x,t)$, M(x,t).

Используя этот метод, при принятых начальных и граничных условиях из решения системы дифференциальных уравнений (1) получим выражения для указанных функций в операторной форме:

$$\omega(x,s) = \frac{ch\gamma(l-x)}{ch\gamma}\omega_H(s) - \rho(s)M_k(s)\frac{sh\gamma x}{ch\gamma},$$
(2)

$$M(x,s) = \frac{1}{\rho(s)} \cdot \frac{sh\gamma(l-x)}{ch\gamma} \omega_H(s) + M_k(s) \frac{ch\gamma x}{sh\gamma l},$$
(3)

идс $\gamma = \gamma(s) = \sqrt{(sk_1 + k_3)(sk_2 + k_4)}$ – операторная постоянная распространения волны;

 $\rho(s) = \sqrt{\frac{sk_1 + k_3}{sk_2 + k_4}}$ – операторное волновое сопротивление колонны бурильных труб;

s – оператор преобразования Лапласа; $\omega(x,s)$, M(x,s), $\omega_H(s)$, $M_k(s)$ – Лапласово изображение функций $\omega(x,t), M(x,t), \omega_{H}(t), M_{k}(t).$

Второй этап решения поставленной задачи связан с осуществлением перехода от Лапласовых изображений (2), (3) в область оригиналов.

При этом, в отличие от работы [4], для решения поставленной задачи в данной работе был предложен иной подход, суть которого заключается в следующем.

В выражениях для функций $\omega(x,s)$, M(x,s) из (2), (3), переходя от гиперболических функций к степенным функциям, получим:

$$M(\delta,s)\frac{1}{s} = \sqrt{\frac{k_2}{k_1}}(1 + \frac{k_4}{k_2}\frac{1}{s})\frac{1}{\sqrt{(s+\alpha)^2 - \beta^2}} \cdot \frac{e^{-2\beta\delta} - e^{-2\beta(1-\delta)}}{1 + e^{-2\beta}}\omega_H(s) +$$
(4)

$$+\frac{1}{s} \cdot \frac{e^{-2\eta\delta} + e^{-\eta(1+2\delta)}}{1 + e^{-2\eta}} M_{k}(s),$$

$$\omega(\delta, s)(1 + \frac{k_{4}}{k_{2}} \cdot \frac{1}{s}) \frac{1}{\sqrt{(s+\alpha)^{2} - \beta^{2}}} = (1 + \frac{k_{4}}{k_{2}} \frac{1}{s}) \cdot \frac{1}{\sqrt{(s+\alpha)^{2} - \beta^{2}}} \frac{e^{-2\eta\delta} + e^{-2\eta(1-\delta)}}{1 + e^{-2\eta}} \omega_{H}(s) - \rho M_{k}(s) \frac{e^{-\eta(1-2\delta)} - e^{-\eta(1+2\delta)}}{1 + e^{-2\eta}} \cdot \frac{1}{s},$$
(5)

где $\gamma = \gamma(s) = \frac{1}{\upsilon} \sqrt{(p+\alpha)^2 - \beta^2}, \quad \upsilon = 1/\sqrt{k_1 k_2}$ – скорость распространения волны;

$$\rho = \sqrt{\frac{k_1}{k_2}}$$
 – волновое сопротивление колонны бурильных труб без учета потерь;
 $\alpha = \frac{1}{2} \left(\frac{k_3}{k_1} + \frac{k_4}{k_2} \right); \quad \beta = \frac{1}{2} \left(\frac{k_3}{k_1} - \frac{k_4}{k_2} \right); \quad \delta = \frac{x}{2l}.$
В частном случае, если $\kappa_4 = 0$, то $\alpha = \beta$. При $\beta = 0$, в так назн

В частном случае, если $\kappa_4 = 0$, то $\alpha = \beta$. При $\beta = 0$, в так называемых сбалансированных звеньях, для которых имеет место следующее соотношение параметров: $\frac{k_3}{k_1} = \frac{k_4}{k_2}$.

Для сбалансированного звена ($\beta = 0$) коэффициент ρ оказывается равным тому же значению, что и для звена без потерь: $\rho = \sqrt{\frac{k_1}{k_2}}$.

Выражения (4), (5) можно представить в виде:

$$M(\delta,s)\left[\frac{1}{s} + k_1(s)\right] = \sqrt{\frac{k_2}{k_1}} \left[k_2(s) + \frac{k_4}{k_2}k_3(s) - k_4(s) - \frac{k_4}{k_2}k_5(s)\right] \omega_H(s) + [k_6(s) + k_7(s)]M_k(s),$$
(6)

$$\omega(\delta,s) \left[k_8(s) + \frac{k_4}{k_2} k_9(s) + k_{10}(s) + \frac{k_4}{k_2} k_{11}(s) \right] = \left[k_2(s) + \frac{k_4}{k_2} k_3(s) + k_4(s) + \frac{k_4}{k_2} k_5(s) \right] \omega_H(s) - \rho[k_6(s) - k_7(s)] M_k(s),$$
(7)

где

$$k_{1}(s) = \frac{e^{-2\beta}}{s}, k_{2}(s) = \frac{e^{-2\beta}}{\sqrt{(s+\alpha)^{2}-\beta^{2}}}, k_{3}(s) = \frac{1}{s} \cdot \frac{e^{-2\beta}}{\sqrt{(s+\alpha)^{2}-\beta^{2}}}, k_{4}(s) = \frac{e^{-2\beta(1-\delta)}}{\sqrt{(s+\alpha)^{2}-\beta^{2}}}, k_{5}(s) = \frac{1}{s} \cdot \frac{e^{-2\beta(1-\delta)}}{\sqrt{(s+\alpha)^{2}-\beta^{2}}}, k_{6}(s) = \frac{e^{-\beta(1-2\delta)}}{s}, k_{7}(s) = \frac{e^{-\beta(1+2\delta)}}{s}, k_{8}(s) = \frac{1}{\sqrt{(s+\alpha)^{2}-\beta^{2}}}, k_{9}(s) = \frac{1}{s} \cdot \frac{1}{\sqrt{(s+\alpha)^{2}-\beta^{2}}}, k_{10}(s) = \frac{e^{-2\beta}}{\sqrt{(s+\alpha)^{2}-\beta^{2}}}, k_{11}(s) = \frac{1}{s} \cdot \frac{e^{-2\beta}}{\sqrt{(s+\alpha)^{2}-\beta^{2}}}, k_{10}(s) = \frac{e^{-2\beta}}{\sqrt{(s+\alpha)^{2}-\beta^{2}}}, k_{11}(s) = \frac{1}{s} \cdot \frac{1}{\sqrt{(s+\alpha)^{2}-\beta^{2}}}, k_{11}(s) = \frac{1}$$

 $k_1(s), K, k_{11}(s)$ – передаточные функции.

На основе теоремы свертки, переходя от уравнений (6), (7) относительно изображений к уравнениям относительно оригиналов, получим:

$$\int_{0}^{t} M(t-\theta,\delta)\mathbf{l}(\theta)d\theta + \int_{\frac{2l}{v}}^{t} M(t-\theta,\delta)k_{1}(\theta)d\theta = \frac{1}{\rho} \left[\int_{\frac{2l\delta}{v}}^{t} \omega_{H}(t-\theta)k_{2}(\theta)d\theta + \frac{k_{4}}{k_{2}} \int_{\frac{2l\delta}{v}}^{t} \omega_{H}(t-\theta)k_{3}(\theta)d\theta - \int_{\frac{2l(1-\delta)}{v}}^{t} \omega_{H}(t-\theta)k_{4}(\theta)d\theta - \frac{k_{4}}{k_{2}} \int_{\frac{2l(1-\delta)}{v}}^{t} \omega_{H}(t-\theta)k_{5}(\theta)d\theta \right] +$$
(8)
$$+ \int_{\frac{l(1-2\delta)}{v}}^{t} M_{k}(t-\theta)k_{6}(\theta)d\theta + \int_{\frac{l(1+2\delta)}{v}}^{t} M_{k}(t-\theta)k_{7}(\theta)d\theta - \frac{k_{4}}{v} \int_{\frac{2l}{v}}^{t} \omega(t-\theta,\delta)k_{10}(\theta)d\theta + \frac{k_{4}}{k_{2}} \int_{\frac{2l}{v}}^{t} \omega(t-\theta,\delta)k_{11}(\theta)d\theta =$$

$$= \frac{\int_{2l\delta}^{t} \omega_{H}(t-\theta)k_{2}(\theta)d\theta + \frac{k_{4}}{k_{2}} \frac{\int_{2l\delta}^{t} \omega_{H}(t-\theta)k_{3}(\theta)d\theta + \frac{\int_{2l(1-\delta)}^{t} \omega_{H}(t-\theta)k_{4}(\theta)d\theta + \frac{2l(1-\delta)}{\upsilon}}{\upsilon} + \frac{k_{4}}{k_{2}} \frac{\int_{2l(1-\delta)}^{t} \omega_{H}(t-\theta)k_{5}(\theta)d\theta - \rho \left(\int_{1}^{t} M_{k}(t-\theta)k_{6}(\theta)d\theta - \int_{0}^{t} M_{k}(t-\theta)k_{7}(\theta)d\theta \right),$$

$$(9)$$

где $k_1(t)$, К, $k_{11}(t)$ – известные оригиналы передаточных функций $k_1(s)$, К, $k_{11}(s)$.

Интегральные уравнения (8), (9) могут быть решены численно, если заменить интегралы суммами.

В связи с этим, используя связь между непрерывным временем t и дискретным n в виде $t = nT/\lambda$ ($T = 2\tau$, τ -время пробега волны в один конец объекта с распределенными параметрами; λ - любое целое число), производим дискретизацию уравнения (8), (9) при выбранном интервале T/λ , заменяя операцию непрерывного интегрирования суммированием, пользуясь формулой трапеций.

При этом вместо (8), (9), получим:

$$\begin{split} M[n,\delta] &= \frac{1}{\rho} \bigg(\sum_{m=\lambda\delta}^{n} \bigg[\left(k_2[m] + \frac{k_4}{k_2} \cdot \frac{T}{\lambda} k_3[m] \right) \omega_H[n-m] + \\ &+ \bigg(k_2[n-m+1] + \frac{k_4}{k_2} \cdot \frac{T}{\lambda} k_3[n-m+1] \bigg) \omega_H[n-1] \bigg] \bigg) - \\ &- \frac{1}{\rho} \bigg(\sum_{m=\lambda\delta}^{n} \bigg[\bigg(k_4[m] - \frac{k_4}{k_2} \cdot \frac{T}{\lambda} k_5[m] \bigg) \omega_H[n-m] + \bigg(k_4[n-m+1] - \frac{k_4}{k_2} \cdot \frac{T}{\lambda} k_5[n-m+1] \bigg) \omega_H[m-1] \bigg] \bigg) + \\ &+ \sum_{m=0.5\lambda(1-2\delta)}^{n} (k_6[m] M_k[n-m] + k_6[n-m+1] M_k[m-1]) + \end{split}$$

при *n* π λ

-

$$k_{1}[n] = \begin{cases} 0\\ e^{-aT} + \frac{aT}{2} \sum_{m=\lambda+1}^{n} \sum_{i=0}^{1} B_{1}[m-i] \end{cases}$$

при *n* φ λ

$$B_{1}[n] = e^{-\frac{aT}{\lambda}n} \frac{I_{1}\left(\frac{\beta T}{\lambda}\sqrt{n^{2}-\lambda^{2}}\right)}{\sqrt{n^{2}-\lambda^{2}}}, \quad k_{2}[n] = e^{-\frac{aT}{\lambda}n} I_{0}\left(\beta\frac{T}{\lambda}\sqrt{n^{2}-(\lambda\delta)^{2}}\right),$$
$$k_{3}[n] = \sum_{m=\lambda\delta}^{n} k_{2}[m]$$
$$k_{4}[n] = e^{-\frac{aT}{\lambda}n} I_{0}\left(\beta\frac{T}{\lambda}\sqrt{n^{2}-[\lambda(1-\delta)]^{2}}\right), \quad k_{5}[n] = \sum_{m=\lambda(1-\delta)}^{n} k_{4}[m]$$

при $n \pi 0.5\lambda(1-2\delta)$

$$k_{6}[n] = \begin{cases} 0\\ e^{-aT(1-2\delta)} + \frac{aT(1-2\delta)}{2} \sum_{m=0.5\lambda(1-2\delta)+1}^{n} \sum_{i=0}^{1} B_{6}[m-i] \end{cases}$$

при $n \neq 0.5\lambda(1-2\delta)$

$$B_6[n] = e^{-\frac{aT}{\lambda}n} \frac{I_1\left(\frac{\beta T}{\lambda}\sqrt{n^2 - [0.5\lambda(1-2\delta)]^2}\right)}{\sqrt{n^2 - [0.5\lambda(1-2\delta)]^2}},$$

при $n \pi 0.5\lambda(1+2\delta)$

$$k_{7}[n] = \begin{cases} 0\\ e^{-aT(1+2\delta)} + \frac{aT(1+2\delta)}{2} \sum_{m=0.5\lambda(1+2\delta)+1}^{n} \sum_{i=0}^{1} B_{7}[m-i] \\ (1+2\delta) \end{cases}$$

при $n \neq 0.5\lambda(1+2\delta)$

$$B_7[n] = e^{-\frac{aT}{\lambda}n} \frac{I_1\left(\frac{\beta T}{\lambda}\sqrt{n^2 - [0.5\lambda(1+2\delta)]^2}\right)}{\sqrt{n^2 - [0.5\lambda(1+2\delta)]^2}},$$

$$k_8[n] = e^{-\frac{aT}{\lambda}n} I_0\left(\frac{\beta T}{\lambda}n\right), \qquad k_9[n] = \sum_{m=0}^n k_8[n],$$
$$k_{10}[n] = e^{-\frac{at}{\lambda}n} I_0\left(\frac{\beta T}{\lambda}\sqrt{n^2 - \lambda^2}\right), \qquad k_{11}[n] = \sum_{m=\lambda}^n k_{10}[m],$$

 I_0 , I_1 - Бесселевые функции соответственно нулевого и первого порядка.

 $_{\alpha}T$

Полученные рекуррентные соотношения (10), (11) легко реализуются на компьютере.

Погрешность расчета связана с величиной λ . Чем больше выбрано число λ , тем в меньшей мере характеристики непрерывной функции отличаются от соответствующих характеристик решетчатых.

В рекуррентные соотношения (10), (11) входит неизвестная функция $M_{\kappa}[n]$ -изменение крутящего момента в конце колонны труб. Определение ее значения осуществляется по следующей методике.

Подставляя в рекуррентное соотношение (11) $\delta = \frac{1}{2}$, получим:

$$\omega_k[n] = B_1[n] - \rho A \sum_{m=0}^n (1[m]M_k[n-m] + 1[n-m]M_k[m-1]),$$
(12)

где

$$B_{1}[n] = A \left\{ 2 \sum_{m=0.5\lambda}^{n} \left[\left(k_{2}^{1}[m] + \frac{k_{4}}{k_{2}} \cdot \frac{T}{\lambda} k_{3}^{1}[m] \right) \omega_{H}[n-m] + \left(k_{2}^{1}[n-m+1] + \frac{k_{4}}{k_{2}} \cdot \frac{T}{\lambda} k_{3}^{1}[n-m+1] \right) \omega_{H}[m-1] \right] + \left(k_{2}^{1}[n-m+1] + \frac{k_{4}}{k_{2}} \cdot \frac{T}{\lambda} k_{3}^{1}[n-m+1] \right) \omega_{H}[m-1] \right) - \frac{1}{m=\lambda} \left[\left(k_{10}^{1}[m] + \frac{k_{4}T}{k_{2}\lambda} k_{11}^{1}[m] \right) \omega_{k}[n-m] + \left(k_{10}^{1}[n-m+1] + \frac{k_{4}T}{k_{2}\lambda} k_{11}^{1}[n-m+1] \right) \omega_{k}[m-1] \right] - \frac{1}{m=\lambda} \left[\left(k_{8}[n-m] + \frac{k_{4}T}{k_{2}\lambda} k_{9}[n-m] \right) \omega_{k}[m] + \left(k_{8}[n-m+1] + \frac{k_{4}T}{k_{2}\lambda} k_{9}[n-m+1] \right) \omega_{k}[m-1] \right] - \frac{1}{m=1} \left[\left(k_{8}[n-m] + \frac{k_{4}T}{k_{2}\lambda} k_{9}[n-m] \right) \omega_{k}[m] + \left(k_{8}[n-m+1] + \frac{k_{4}T}{k_{2}\lambda} k_{9}[n-m+1] \right) \omega_{k}[m-1] \right] - \frac{1}{k_{2}^{1}[n]} = e^{-\frac{\alpha T}{\lambda}n} I_{0} \left(\frac{\beta T}{\lambda} \sqrt{n^{2} - (0.5\lambda)^{2}} \right), \quad k_{3}^{1}[n] = \sum_{m=0,5\lambda}^{n} k_{2}^{1}[m], \quad k_{7}^{1}[n] = k_{1}[n].$$

Следовательно, согласно граничным условиям, можно представить следующее соотношение в решетчатой форме:

$$\omega_k[n] = \mu M_k[n] \tag{13}$$

Подставляя значение функции $\omega_k[n]$ из (12) в (13), получаем следующее рекуррентное соотношение для момента кручения $M_k[n]$:

$$M_{k}[n] = \frac{1}{\frac{\mu}{\rho} + A} \left\{ \frac{1}{\rho} B_{1}[n] - A \sum_{m=1}^{n} (1[m]M_{k}[n-m] + 1[n-m+1M_{k}[m-1]]) \right\}$$
(14)

Следовательно, определив значение решетчатой функции $M_k[n]$ из (14), осуществляется переход к нахождению изменения угловой скорости и крутящего момента в любой точке исходной системы с помощью рекуррентных соотношений (11), (12).

 Aliyev Y.A., Mamedova Z.A. Numerical method of calculation of transients processes in non-linear systems of the drilling electric drive including the part with the distributed parameters.// 2nd International Conference on Technical and Physical Problems in Power Engineering, 6-8 September2004 Tabriz-Iran.

^{1.} Алиев Я.А. Численное определение переходных процессов в колонне бурильных труб как объекта с распределенными параметрами. //Проблемы энергетики 2004.- №1.

- 3. *Мамедов А.И., Алиев Я.А.* К анализу переходных процессов в системах с сосредоточенными параметрами дискретными параметрами.// Проблемы энергетики.- 2004.-№4.
- 4. *Кадымов Я.Б* Переходные процессы в системах с распределенными параметрами. М.: Физматгиз, 1968

İTKİLƏRİ NƏZƏRƏ ALMAQLA PAYLANMIŞ PARAMETRLİ QAZIMA KOLONNASINDA BAŞ VERƏN KEÇİD PROSESLƏRİNİN HESABLANMASINA DAİR

ƏLİYEV Y.A., MƏMMƏDOVA Z.A.

Məqalədə itkiləri nəzərə almaqla paylanmış parametrli qazıma kolonnasında baş verən proseslərin trapesyia formasından istifadə eədərək hesablanması üçün ədədi üsul təklif edilmişdir.

TO QUESTION OF NUMERICAL MODELING TRANSIENT PROCESSES IN STRING OF DRILL-PIPES WITH DISTRIBUTED PARAMETERS REGISTRATION OF LOSSES

ALIYEV Y.A., MAMEDOVA Z.A.

The method for numerical modeling transient processes in string of drill-pipes with distributed parameters registration of losses has been suggested.